期刊文献+

用于不平衡节点分类的集成图神经网络模型 被引量:1

Ensemble Graph Neural Network Model for Imbalanced Node Classification
下载PDF
导出
摘要 为解决图神经网络(GNN)上不平衡节点的分类问题,提出一种Bagging集成模型,该模型使用图卷积网络(GCN)作为基分类器。在该模型中,先对若干基分类器进行并行训练,然后使用多数投票的方式对这些基分类器的预测结果进行集成,最终完成分类任务。实验结果表明,该文提出的模型显著优于其他现有基线方法,验证了其在不平衡节点分类中的有效性。 To solve the classification problem of unbalanced nodes on graph neural network(GNN),a Bagging ensemble model is proposed,which uses GCN as the base classifier.In this model,several base classifiers are trained in parallel,and then the prediction results of these base classifiers are integrated by majority voting to complete the classification task finally.Experimental results show that the proposed model in this paper is significantly superior to other existing baseline methods,and its effectiveness in unbalanced node classification is verified.
作者 郭梦昕 GUO Mengxin(Taiyuan Normal University,Jinzhong 030619,China)
机构地区 太原师范学院
出处 《现代信息科技》 2023年第3期29-32,共4页 Modern Information Technology
关键词 图神经网络 不平衡节点分类 集成学习 graph neural network imbalanced node classification ensemble learning
  • 相关文献

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部