期刊文献+

基于自适应精确罚函数的分布式资源分配算法 被引量:2

An adaptive exact-penalty-based distributed resource allocation algorithm
下载PDF
导出
摘要 在多智能体系统中,分布式资源分配问题是近年来研究热点之一.分布式资源分配问题旨在通过智能体间信息交互实现资源最优配置.其中智能体局部约束给算法设计带来巨大挑战.首先,针对一阶多智能体系统,提出基于自适应精确罚函数的分布式资源分配算法,其中各智能体利用距离函数实现局部约束求解.此外,自适应设计思想旨在避免算法对全局先验知识获取.其次,利用跟踪技术实现二阶多智能体系统算法设计.并利用凸函数和非光滑分析法给出严谨的收敛性分析.最后,仿真结果验证了本文所设计优化算法对强凸分布式资源分配问题的有效性. Recently, the distributed resource allocation problem is one of the important issues in multi-agent systems.The distributed resource allocation problem aims to realize the optimal allocation of resources through the information interaction between agents. The local constraints of each agent bring great challenges to the algorithm design. First, an adaptive exact-penalty-based distributed resource allocation algorithm is proposed for the first-order multi-agent system,in which the local constraint is reformed by the distance function. Besides, the priori computation or knowledge of the global cost function is avoided based on the adaptive control scheme. Second, the above proposed first-order algorithm is modified for the second-order multi-agent system based on the tracking control technology. Then, by virtual of the nonsmooth analysis and convex function theory, the rigorous convergence analysis is given. Finally, the proposed algorithms are claimed effectively by the simulation examples.
作者 时侠圣 徐磊 杨涛 SHI Xia-sheng;XU Lei;YANG Tao(Engineering Research Center of Intelligent Control for Underground Space,Ministry of Education,China University of Mining and Technology,Xuzhou Jiangsu 221116,China;The State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang Liaoning 110819,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2022年第10期1937-1945,共9页 Control Theory & Applications
基金 中央高校基本科研业务费专项资金(2021QN1052)资助。
关键词 分布式资源分配 自适应 距离函数 非光滑分析 distributed resource allocation adaptive distance function:non-smooth analysis
  • 相关文献

参考文献3

二级参考文献22

共引文献40

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部