期刊文献+

基于改进Hough圆检测算法的明场微滴图像识别

Bright Field Droplet Image Recognition Based on Improved Hough Circle Detection Algorithm
下载PDF
导出
摘要 针对数字聚合酶链式反应(PCR)明场微滴图像的微滴数目统计和直径计算方法需借助人工处理费时费力,且识别精度不高的问题,提出一种改进Hough变换的快速又准确的微滴检测算法。首先,利用边缘点的梯度信息和圆的几何性质确定候选圆;其次,若设定范围内的边缘点到候选圆圆心的距离与半径近似相等,则将此圆判定为真实圆;最后,将近邻的真实圆中半径最大的圆作为最终的检测结果。经对比实验验证,文中算法能明显提高微滴识别的效率和直径测量的精度。 Aiming at the number statistics and diameter calculation method of droplets in digital polymerase chain reaction(PCR)bright field droplet image need the help of manual processing,which is time-consuming and laborious,and the recognition accuracy is not high,a fast and accurate droplet detection algorithm based on improved Hough transform is proposed.Firstly,the candidate circle is determined by using the gradient infor-mation of edge points and the geometric properties of the circle;Secondly,if the distance between the edge point within the set range and the center of the candidate circle is approximately equal to the radius,the circle is determined as a real circle;Finally,the circle with the largest radius in the nearest real circle is taken as the final detection result.Comparative experiments show that the algorithm can significantly improve the efficiency of droplet recognition and the accuracy of diameter measurement.
作者 李珍珍 Li Zhen-zhen(The 27th Research Institute of China Electronics Technology Group Corporation,Zhengzhou 450047,China)
出处 《电光系统》 2022年第4期9-14,共6页 Electronic and Electro-optical Systems
关键词 HOUGH变换 圆检测 微滴图像 梯度信息 图像识别 Hough Transform Circle Detection Droplet Image Gradient Information Image Recognition
  • 引文网络
  • 相关文献

参考文献2

二级参考文献16

  • 1岳健,项学智.一种改进的Hough圆检测算法[J].应用科技,2006,33(6):74-76. 被引量:11
  • 2Sun Zhiguo, Teng Hongfei. Optimal layout design of a satellite module [J]. Engineering Optimization, 2003, 35(5): 513-529.
  • 3刘占伟 滕弘飞.人智、算法、知识综合集成的布局设计方法[OL].http://www.paper.edu.cn/scholartools/released/download.jsp?file=200403-189(in Chinese),2004-11-01.
  • 4Huda Loannou D, Laine W, et al, Circle recognition through a 2D Hough transform and radius histogram [J]. Image and Vision Computing, 1999, 17(1): 15-26.
  • 5Heung Sookim, Jong Hwankim. A two-step cirele detection algorithm from the intersection chords [J]. Pattern Recognition Letters, 2001, 22(6/7): 787-798.
  • 6Peng Yenyin. A new circle/ellipse detector using genetic algorithms [J]. Pattern Recognition Letters, 1999, 20(7): 731-740.
  • 7Xu L, Oja E. Randomized Hough transform (RHT); basic mechanisms, algorithms, and computational complexities [J].CVGIP: Image Understanding, 1993, 57(2): 131-154.
  • 8Chen Tehchuan, Chung Kuoliang. An efficient randomized algorithm for detecting circles [J]. Computer Vision and Image Understanding, 2001, 83(2): 172-191.
  • 9Yu Qiao, Ong S H. Connectivity-based multiple-circle fitting[J]. Pallern Recognition, 2004, 37(4): 755-765.
  • 10陈燕新,戚飞虎.基于随机Hough变换的快速圆检测方法[J].上海交通大学学报,1998,32(10):17-20. 被引量:35

共引文献92

;
使用帮助 返回顶部