期刊文献+

基于双尺度分解与随机游走的多聚焦图像融合方法

Multi-Focus Image Fusion Method Based on Double-Scale Decomposition and Random Walk
原文传递
导出
摘要 为了较好地平滑边缘区域,避免边缘衔接处产生伪影,提出了一种基于双尺度分解与随机游走的多聚焦图像融合方法。首先,将源图像利用高斯滤波分解为大尺度与小尺度聚焦图,对分解得到的大尺度和小尺度聚焦图采用不同的引导滤波对其边缘进行平滑;然后,将大尺度与小尺度聚焦图作为随机游走算法的标记节点通过融合算法得到初始决策图,并再次使用引导滤波对决策图进行优化;最后,根据决策图对源图像进行重构,得到最终融合图像。实验结果表明,所提方法较好地获取了源图像中的聚焦信息,更好地保留了聚焦区域的边缘纹理及细节信息,在主观评价和客观评价指标方面均取得了更优的效果。 This paper proposes a multi-focus image fusion method based on double-scale decomposition and random walk to smooth the edge region and avoid artifacts at the edge junction.The source images are first decomposed into large-scale and small-scale focus images using a Gaussian filter,and the edges of the decomposed large-scale and small-scale focus images are smoothed using various guiding filters.Then,the large-scale and small-scale focus maps are used as the marker nodes of the random walk algorithm,the initial decision map is obtained using the fusion algorithm,and the guided filter is used to optimize the decision map again.Finally,the source images are reconstructed using the decision graphs to produce the final fused image.The results of the experiments show that our method can effectively obtain the focus information in the source images while retaining the edge texture and detailed information of the focus area.It outperformed the competition in both subjective and objective evaluation indicators.
作者 李小苗 杨艳春 党建武 王阳萍 Li Xiaomiao;Yang Yanchun;Dang Jianwu;Wang Yangping(School of Electronic and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,Gansu,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2022年第22期166-173,共8页 Laser & Optoelectronics Progress
基金 长江学者和创新团队发展计划(IRT_16R36) 国家自然科学基金(62067006) 甘肃省科技计划项目(18JR3RA104) 甘肃省高等学校产业支撑计划项目(2020C-19) 兰州市科技计划项目(2019-4-49) 2022年甘肃省高等学校青年博士基金 甘肃省自然科学基金(21JR7RA300) 兰州交通大学天佑创新团队(TY202003) 兰州交通大学-天津大学联合创新基金项目(2021052)。
关键词 图像处理 多聚焦图像融合 高斯分解 随机游走 引导滤波 image processing multi-focus image fusion Gaussian decomposition random walk guide filtering
  • 相关文献

参考文献9

二级参考文献50

  • 1欧阳宁,李子,袁华,陈利霞.基于自适应稀疏表示的多聚焦图像融合[J].微电子学与计算机,2015,32(6):22-26. 被引量:6
  • 2苗启广,王宝树.一种自适应PCNN多聚焦图像融合新方法[J].电子与信息学报,2006,28(3):466-470. 被引量:36
  • 3王亚杰,李殿起,徐心和.基于双树复小波变换彩色多聚焦图像融合方法[J].计算机工程与应用,2007,43(28):12-14. 被引量:13
  • 4Goshtasby A A,NIkolov S.Image fusion:advances in the state of the art[J ].Inf.Fusion,2007,8(2):114-118.
  • 5Pohl C,Van Genderen J L.Multisensor image fusion in remote se nsing:concepts,methods and applications[J].Int.J.Remote Sens.,1998,19(5):823-854.
  • 6Mitianoudis N,Stathaki T.Pixel-based and region-based image fusion schemes using ICA bases[J].Inf.Fusion,2007,8(2):131-142.
  • 7Rockinger O.Pixel level fusion of image sequences using wavele t frames[C].Proc.16th Leeds Annual Statistical Research Workshop,[C].1996,149-154.
  • 8Chung K L,Yang W J,Yan W M.Efficient edge-preserving algorithm for color contrast enhancement with application to color image segmentation[J].J.Vis.Commun.Image Represent .,2008,19(5):299-310.
  • 9Chen C, Wang C D.A simple edge-preserving filtering techniq ue for constructing multi-resolution systems of images[J].Pattern Recognit.Lett.,1999,20(5) :495-506.
  • 10Perona P,Malik J.Scale-space and edge dete ction using anisotropic diffusion,IEEE Trans.Pattern Anal.Mach.Intell.,1990,12(7):629-639.

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部