期刊文献+

面向嵌入式系统的人体行为识别 被引量:4

Human Behavior Recognition for Embedded System
原文传递
导出
摘要 为了在嵌入式平台上使人体行为识别网络达到实时效果,提出了一种基于轻量级OpenPose模型的人体行为识别方法。所提方法从人体的18个骨骼关键点角度出发,通过骨骼关键点的空间位置确定行为类型。首先通过轻量级OpenPose模型提取人体的18个骨骼关键点坐标信息,然后利用关键点的编码对人体的行为进行描述,最后利用分类器对获取的关键点坐标进行分类,从而识别出人体的行为状态,并将其移植到Jetson Xavier NX设备上,利用单目相机进行了测试。实验结果表明,所提方法在嵌入式开发板Jetson Xavier NX上能够快速、准确识别出行走、挥手、下蹲等人体的11类行为,平均识别准确率达到96.08%,检测速度达到了11 frame/s以上,相比于原模型,检测速度提升了177%。 To achieve real-time effects of the human behavior recognition network on the embedded platform,a human behavior recognition technique based on the lightweight OpenPose model is proposed.This approach begins with the viewpoint of 18 human body bone key points and calculates the behavior type based on the spatial position of the bone key points.First,the lightweight OpenPose model is used to extract the 18 bone key points to coordinate information about the human body.Then,the key point coding is used to describe the human body behavior.Finally,the classifier is used to classify the acquired key point coordinates to detect the human body behavior status and transplant it into Jetson Xavier NX equipment using a monocular camera for testing.Experimental results show that this method can quickly and accurately identify 11 types of human behaviors,such as walking,waving,and squatting,on the embedded development board Jetson Xavier NX,with an average recognition accuracy rate of 96.08%,and detection speed of>11 frame/s.The frame rate is increased by 177%compared to the original model.
作者 伏娜娜 刘大铭 张恒博 李譞洞 Fu Nana;Liu Daming;Zhang Hengbo;Li Xuandong(College of Physics,Electronics and Electrical Engineering,Ningxia University,Yinchuan 750021,Ningxia,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2022年第22期204-211,共8页 Laser & Optoelectronics Progress
基金 宁夏重点研发计划重大项目(2018BBF02022-04) 宁夏自然科学基金(2021AAC03113)。
关键词 机器视觉 嵌入式系统 Jetson Xavier NX OpenPose 行为识别 轻量级网络 machine vision embedded system Jetson Xavier NX OpenPose behavior recognition lightweight network
  • 相关文献

参考文献9

二级参考文献46

  • 1薛洋.基于单个加速度传感器的人体运动模式识别[D].广州:华南理工大学.2011.
  • 2I.au S l.. David K. Movement recognition using the accelerometer in smart phones [ C] //Future Network and Mobile Summit, 2010. Florence: IEEE, 2010.. 1- 9.
  • 3Preece S J, Goulermas J Y, Kenney L P J, el al. A comparison of feature extraction methods for the clas sification of dynamic activities from accelerometer da- ta[J]. IEEE Transactions on Biomedical Engineering. 2009, 56(3).. 871 879.
  • 4He Z Y, Jin I. W. Activity recognition from aecelera tion data using AR model representation and SVM [C] // Machine Learning and Cybernetics. Kunming .. IEEE, 2008:2245 2250.
  • 5Khan M, Ahamed S I. Rahman M, et al. A feature extraction method for real time human activity recog- nition on cell phones EDB/OI.3. (2011 06 05)[2014- 05 12]. http://epublications, marquette, edu/mscs_ fac/183/.
  • 6KwapiszJ R, Weiss G M, Moore S A. Activity rec- ognition using cell phone aecelerometers[J]. ACM SIGKDD Explorations Newsletter, 2011, 12 ( 2 ) : 74 82.
  • 7Chen Y P, YangJ Y, LiouS N, etal. Onlineclassi- fier construction algorithm for human activity detec- tlon using a tri-axial aecelerometer[J]. Applied Math- ematics and Computation, 2008, 205(2): 849-860.
  • 8Anguita D, Ghio A, Oneto I., et al. A public domain dataset for human activily recognition using smart- phones[C]//European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges: ESANN, 2013: 437-442.
  • 9Bao F S, Gao J M. Hu J. etal. Automated epilepsy diagnosis using interictal scalp EEG[C] ,// Engineering in Medicine and Biology Society. Minneapolis. MN.. IEEE, 2009: 6603-6607.
  • 10周明全,樊亚春,耿国华.一种基于空间对称变换的三维模型形状描述方法[J].电子学报,2010,38(4):853-859. 被引量:6

共引文献78

同被引文献39

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部