摘要
As the anode active substance of lithium ions battery(LIB),the low conductivity/ion diffusivity and large volume changes of tungsten oxide(WO_(3))lead to its serious polarization during the lithiation/delithiation process,decreasing the cycling stability.To address these challenges,a binder-free anode consisting of nitrogen-doped tungsten oxide nanosheets,encapsulated in carbon layers(N-doped WO_(3)@CL)and entangled with carbon nanotubes macro-films(CMF),was successfully synthesized through a combination of hydrothermal and online assembly method.Compared with the pristine tungsten oxide entangled with carbon nanotubes macro-films(WO_(3)@CMF),the synthesized N-doped WO_(3)@CL@CMF as a binder-free LIB anode demonstrated better electrochemical performance,which could be attributed to(1)surface defects of WO_(3)created by N dopant providing more channels to improve Li^(+)diffusion,(2)the N-doped WO_(3)@CL with a flower-like structure shortening the diffusion length of Li^(+)ions and further leading to high Li^(+)incorporation,and(3)carbon layers and carbon nanotubes synergistically alleviating the large volume change of the N-doped WO_(3)@CL@CMF electrode during the charging and discharging process.The present study offers insights into employing nitrogen dopant and a carbon matrix to mediate the conductivity and wrapped structure in the WO_(3)semiconductor powder,which provides an important strategy for large-scale design of the binder-free LIB anode with high performance.
基金
This study was financially supported by the National Natural Science Foundation of China[Grant No.22062008]
Supported by the program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology[Grant No.JXUSTQJBJ2020008]
the Special Fund for Postgraduate Innovation of Jiangxi Province[Grant No.YC2020-S458 and YC2021-S569]
National Training Program for College Students’Innovation and Entrepreneurship[Grant No.202110407005X]
the Postdoctoral Science Foundation of Jiangxi Province[Grant No.2019KY56 and 2018RC02].