期刊文献+

类脑计算研究简述 被引量:1

A Brief Review of Brain-inspired Computing
下载PDF
导出
摘要 类脑计算是借鉴脑信息处理方式,具备自主学习能力并擅于实时处理非结构化信息的新型计算智能,被认为可能是一条通向通用人工智能的途径。本文首先分析了类脑计算技术框架,并以此为基准,介绍了脑科学、脑图谱、各类脑仿真框架,并列举了常见的神经形态芯片和类脑计算系统;然后从模型、算法、框架、数据集方面系统地介绍了脉冲神经网络,以及当前类脑计算的应用情况;最后分析了类脑计算目前所存在的困难和挑战。 Brain-inspired computing is a new type of computing intelligence that learns from how brain processes information.It has the ability of self-learning and is good at processing unstructured information in real time.For that it’s thought to be a way towards artificial general intelligence.Firstly,we describe the technical framework of brain-inspired computing,and use it as a benchmark to introduce brain science,brain map and various types of brain simulation framework.Then we list common neuromorphic chips and brain-inspired computing system.Spiking neural networks are systematically elaborated from the aspects of models,algorithms,frameworks and datasets.The current applications of brain-inspired computing are also briefly discussed.Finally,the current difficulties and challenges of brain-inspired computing are analyzed.
作者 陈芝协 王存 CHEN Zhixie;WANG Cun(China NanHu Academy of Electronics and Information Technology,Jiaxing314002,China)
出处 《智能物联技术》 2022年第4期1-13,共13页 Technology of Io T& AI
关键词 类脑计算 脑仿真框架 神经形态芯片 脉冲神经网络 Brain-inspired computing brain simulation framework neuromorphic chip Spiking neural networks
  • 相关文献

参考文献8

二级参考文献40

  • 1Furber S B, Galluppi F, Temple S, et al. The spinnaker project. Proc IEEE, 2014, 102: 652-665.
  • 2Beyeler M, Carlson K D, Chou T S, et al. CARLsim 3: a user-friendly and highly optimized library for the creation of neurobiologically detailed spiking neural networks. In: Proceedings of International Joint Conference on Neural Networks (IJCNN), Killarney, 2015. 1-8.
  • 3Merolla P A, Arthur J V, Alvarez-Icaza R, et al. A million spiking-neuron integrated circuit with a scalable commu- nication network and interface. Science, 2014, 345: 668-673.
  • 4Qiao N, Mostafa H, Corradi F, et al. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128 K synapses. Front Neurosci, 2015, 9: 141.
  • 5Dayan P, Abbott L F. Theoretical Neuroscience. Cambridge: MIT Press, 2001. 11-52.
  • 6Neil D, Liu S C. Minitaur, an event-driven FPGA-based spiking network accelerator. IEEE Trans Very Large Scale Integr Syst, 2014, 22: 2621-2628.
  • 7Cheng Z, Hou J, Zhou Q, et al. Sensitivity limits and scaling of bioelectronic graphene transducers. Nano Letters, 2013, 13(6): 2902-2907.
  • 8Liu J, Fu T, Cheng Z, et al. Syringe-injectable electronics. Nature Nanotechnology, 2015, 10(7): 629-636.
  • 9Gong Y, Huang C, Li J Z, et al. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science, 2015, 350(6266): 1361-1366.
  • 10Storace D, Sepehri Rad M, Kang B, et al. Toward better genetically encoded sensors of membrane potential. Trends Neurosci. 2016, 39(5): 277-289.

共引文献189

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部