期刊文献+

基于步态触觉信息的图书馆智能机器人异常状态检测系统 被引量:3

Library intelligent robot abnormal state detection system based on gait tactile information
原文传递
导出
摘要 针对当前图书馆智能机器人步态识别准确率低,导致异常状态检测效果差的问题,提出基于步态触觉信息的图书馆智能机器人异常状态检测和分类。采用基于局部空间信息加权的K-means算法对静态步态图像进行分割处理,分别构建基于改进K-means的CNN网络模型和基于时域注意力的3D残差网络模型,通过这两个模型对静态、动态步态进行特征提取和识别。实验结果表明,对比于SVM分类器,改进K-means算法的CNN网络模型静态步态识别准确率高达98.7%;3D-CNN模型的动态步态分类准确率为99.72%,均高于其他分类模型。最后结合两种算法进行异常状态检测发现,本算法的分类准确率、敏感度和特异性分别为95.42%、95.53%、94.37%。综合分析可知,提出的算法能够实现静态动态的准确识别和异常状态检测,具有一定有效性。 In view of the problem of poor abnormal state detection effect,the abnormal state detection and classification based on gait tactile information is proposed.The K-means algorithm based on local spatial information was used to segment the static gait images,and the CNN network model based on improved K-means and the 3D residual network model based on time-domain attention were constructed to extract and identify the static and dynamic gait.The experimental results show that compared with SVM classifier,the improved K-means algorithm achieves 98.7%,and the dynamic gait classification accuracy of 3D-CNN model is 99.72%,which is higher than other classification models.Finally,by combining with the two algorithms,the classification accuracy,sensitivity and specificity were 95.42%,95.53%and 94.37%,respectively.Comprehensive analysis shows that the proposed algorithm can realize the accurate identification of static dynamics and anomaly state detection.
作者 李小燕 LI Xiaoyan(Shangluo university,Shangluo Shanxi 726000,China)
机构地区 商洛学院
出处 《自动化与仪器仪表》 2023年第1期231-236,共6页 Automation & Instrumentation
基金 商洛学院科研基金项目《商洛乡贤文化研究》(16SLWH06)。
关键词 异常状态检测 步态触觉信息 K-MEANS算法 注意力机制 3D-CNN模型 abnormal state detection gait tactile information K-means algorithm attention mechanism 3D-CNN model
  • 相关文献

参考文献15

二级参考文献95

共引文献131

同被引文献17

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部