期刊文献+

Mid-infrared single-photon upconversion spectroscopy based on temporal-spectral quantum correlation 被引量:2

原文传递
导出
摘要 Promoting the sensitivity of mid-infrared(MIR) spectroscopy to the single-photon level is a critical need for investigating photosensitive biological samples and chemical reactions. MIR spectroscopy based on frequency upconversion is a compelling pioneer allowing high-efficiency MIR spectral measurement with well-developed single-photon detectors, which overcomes the main limitations of high thermal noise of current MIR detectors.However, noise from other nonlinear processes caused by strong pump fields hinders the development of the upconversion-based MIR spectroscopy to reach the single-photon level. Here, a broadband MIR single-photon frequency upconversion spectroscopy is demonstrated based on the temporal-spectral quantum correlation of non-degenerate photon pairs, which is well preserved in the frequency upconversion process and is fully used in extracting the signals from tremendous noise caused by the strong pump. A correlation spectrum broader than660 nm is achieved and applied for the demonstration of sample identification under a low incident photon flux of 0.09 average photons per pulse. The system is featured with non-destructive and robust operation, which makes single-photon-level MIR spectroscopy an appealing option in biochemical applications. ? 2022 Chinese Laser Press.
出处 《Photonics Research》 SCIE EI CAS CSCD 2022年第11期2614-2621,共8页 光子学研究(英文版)
基金 National Key Research and Development Program of China(2021YFA1201503) National Natural Science Foundation of China(11621404,12204174,62175064) Natural Scienceof CQ CSTC2021JCYJ-MAXMX0356 Research Funds of Happiness Flower ECNU(2021ST2110) Fundamental Research Funds for the Central Universities。
关键词 SPECTROSCOPY noise PUMP
  • 相关文献

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部