摘要
在石油勘探地震资料处理中,反Q滤波方法能有效地对地震波进行振幅补偿和相位校正,为地震反演和储层预测提供更准确的信息。对于大规模的地震道集数据处理,反Q滤波方法在CPU计算平台上执行时间较长,影响了地震解释的效率。分析发现,反Q滤波方法大量时间消耗在振幅相位补偿与短时傅里叶变换。在GPU平台上,首先,对振幅相位补偿部分进行并行化;其次,对批量短时傅里叶变换用CUFFT库进行加速;最后,对批量短时傅里叶变换进一步优化并将其应用于反Q滤波方法。实验结果表明,相比CPU计算环境,基于CUFFT库的反Q滤波并行算法效率提升了3.9倍,优化后的批量短时傅里叶变换进一步将效率提升了12%。
In seismic data processing of petroleum exploration,the inverse Q filtering method can effectively perform amplitude compensation and phase correction on seismic waves to provide more accurate information for seismic inversion and reservoir prediction.In large-scale seismic data processing,the inverse Q filtering method takes longer operation time under the CPU computing platform,which affects the efficiency of seismic interpretation.After analysis,it is found that the inverse Q filtering method consumes a lot of time in the short-time Fourier transform and calculates the amplitude and dispersion compensation terms.On the GPU platform,we first parallelizes the amplitude and dispersion compensation calculations,and accelerates the batch short-time Fourier transform with the CUFFT library,and then further optimizes the batch short-time Fourier transform and applies it to the inverse Q filtering method.The results show that compared with the CPU computing environment,the efficiency of the inverse Q filtering parallel algorithm based on the CUFFT library is improved by 3.9 times,and the optimized batch short-time Fourier transform further improves the efficiency of the parallel inverse Q filtering method by 12%.
作者
张全
王一品
张伟
彭博
胥林
ZHANG Quan;WANG Yipin;ZHANG Wei;PENG Bo;XU Lin(School of Computer Science,Southwest Petroleum University,Chengdu,Sichuan 610500,China;School of Information and Communication Engineering,University of Electronic Science and Technology of China,Chengdu,Sichuan 611731,China;School of Information,Southwest Petroleum University,Nanchong,Sichuan 637001,China)
出处
《西南石油大学学报(自然科学版)》
CAS
CSCD
北大核心
2023年第1期24-32,共9页
Journal of Southwest Petroleum University(Science & Technology Edition)
基金
油气藏地质及开发工程国家重点实验室开放基金(PLN2022-51,PLN2021-21,PLN2021-25)。