期刊文献+

基于改进残差网络的两阶段电力系统频率安全多级预警 被引量:1

Two-stage Multi-level Early Warning for Power System Frequency Safety Based on Improved Residual Network
下载PDF
导出
摘要 随着“双碳”目标的提出,可再生能源集群大规模并网,导致电力系统频率安全问题再次凸显。因此,借鉴深度学习方法,提出一种基于改进残差网络的两阶段电力系统频率安全多级预警模型。首先,对电力系统的频率安全进行多级精细划分,提出并构建频率安全多级预警模型。该模型在第1阶段利用基于改进残差网络的分类评估器对受扰后的频率是否会超出安全预警值进行评估,并给出预警等级;在第2阶段利用回归预测器进一步给出预警样本的危险程度。最后,以改进IEEE 10机39节点系统和美国伊利诺伊州200节点系统为算例对该模型进行测试,结果表明该模型具有较高的安全预警准确率,不但优于其他浅层学习方法和深度学习模型,而且可以精确地预测频率危险程度,并具有良好的鲁棒性和抗噪能力。 With the proposal of the“carbon emission peak and carbon neutrality”goal and the large-scale grid connection of renewable energy clusters, the problem of power system frequency safety is highlighted again. Therefore, by referring to the deep learning method, a two-stage multi-level early warning model for power system frequency safety based on improved residual network is proposed. Firstly, the multi-level fine division for power system frequency safety is carried out, and the multi-level early warning model for power system frequency safety is proposed and constructed. In the first stage, the proposed model uses the classification evaluator based on the improved residual network to evaluate whether the disturbed frequency will exceed early warning value for the safety, and gives the early warning level. In the second stage, the regression predictor is used to further give the risk degree of early warning samples. Finally, the improved IEEE 10-machine 39-bus system and Illinois 200-bus system are taken as examples to test the model. The results show that the model has high early warning accuracy for the safety, which is not only better than other shallow learning methods and deep learning models, but also can accurately forecast the frequency risk degree, and has good robustness and anti-noise ability.
作者 李栌苏 吴俊勇 李宝琴 王彦博 王春明 董向明 LI Lusu;WU Junyong;LI Baoqin;WANG Yanbo;WANG Chunming;DONG Xiangming(School of Electrical Engineering,Beijing Jiaotong University,Beijing 100044,China;Central China Branch of State Grid Corporation of China,Wuhan 430077,China)
出处 《电力系统自动化》 EI CSCD 北大核心 2023年第1期22-34,共13页 Automation of Electric Power Systems
基金 国家重点研发计划资助项目(2018YFB0904500) 国家电网公司科技项目(SGLNDK00KJJS1800236)。
关键词 残差网络 新型电力系统 频率安全 多级预警 可再生能源 residual network new power system frequency safety multi-level early warning renewable energy
  • 相关文献

参考文献16

二级参考文献293

共引文献1456

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部