期刊文献+

光伏集群有功功率分层预测控制策略 被引量:9

Hierarchical Prediction Control Strategy of Active Power for Photovoltaic Cluster
下载PDF
导出
摘要 针对光伏集群有功功率的波动性和随机性会显著影响电力系统安全稳定运行的问题,基于大系统分层递阶控制理论,提出光伏集群有功功率分层预测控制策略。该策略在空间尺度上分为3个层级:在日前集群跟踪层以跟踪日前调度计划为目标,建立光伏集群调度计划跟踪模型,并将优化后的调度计划值下发给子集群层;在子集群层中建立协调优化分配模型,同时将集群下发的控制指令合理分配给各子集群,并给出子集群内部电站的优化出力值;在实时电站控制层建立电站有功控制模型,该模型根据运行工况及所接收的优化出力值,自适应采取最大出力模式或跟随模式工作。最后,仿真结果表明所提方法在保证系统安全稳定前提下,能够提高目标区域内光伏消纳,且使得各个光伏电站有功出力更加平稳。 Aiming at the problem that the fluctuations and randomness of active power for photovoltaic clusters will significantly affect the safe and stable operation of the power system, based on the hierarchical control theory of large systems, the hierarchical prediction control strategy of active power for photovoltaic clusters is proposed. The strategy is divided into three levels in the spatial scale. At the day-ahead cluster tracking layer,with the goal to track the recent scheduling plan, a scheduling plan tracking model of the photovoltaic cluster is established, and the optimized scheduling plan is sent to the sub-cluster layer. At the subcluster layer, coordinated optimization allocation model is established, and at the same time, the control command issued by the cluster is reasonably assigned to each sub-cluster, and the optimized output value of the internal power station of the sub-cluster is given. At the real-time power station control layer, the actual power control model of the power station is established, and based on the operation conditions and received optimized output values, this model adaptively adopts the maximum output mode or following mode for operation. Finally, the experimental results show that the proposed method can improve the photovoltaic accommodation in the target area on the premise of ensuring the security and stability of the system, and make the active power of photovoltaic power stations more stable.
作者 叶林 程文丁 李卓 褚晓杰 赵永宁 裴铭 郑颖颖 YE Lin;CHENG Wending;LI Zhuo;CHU Xiaojie;ZHAO Yongning;PEI Ming;ZHENG Yingying(College of Information and Electrical Engineering,China Agricultural University,Beijing 100083,China;China Electric Power Research Institute,Beijing 100192,China)
出处 《电力系统自动化》 EI CSCD 北大核心 2023年第2期42-52,共11页 Automation of Electric Power Systems
基金 国家电网公司科技项目(5100-202155018A-0-0-00)。
关键词 光伏集群 组合预测 多时空尺度 分层控制 协调优化 photovoltaic cluster combination prediction multiple temporal-spatial scales hierarchical control coordination optimization
  • 相关文献

参考文献28

二级参考文献420

共引文献2195

同被引文献155

引证文献9

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部