期刊文献+

基于Actor-Critical架构的5G Massive MIMO波束能效的研究与应用

Research and Application on Multi-beam Energy Efficiency of 5G Massive MIMO Based on Actor-Critical Architecture
下载PDF
导出
摘要 大规模阵列天线技术(Massive Multiple Input Multiple Output,Massive MIMO)作为第五代移动通信(5G)的无线核心技术,实现了多波束空间覆盖增强,然而5G Massive MIMO的多波束射频高能耗、多波束碰撞和增加的干扰造会成5G网络能效下降,运营成本增高。基于3D数字地图、基站工程参数、终端上报的测量报告/最小化路测(Measurement Report/Minimization of Drive Test,MR/MDT)数据、用户/业务分布构建的三维数字孪生栅格,通过卷积长短期记忆(Convolutional Long Short Term Memory,Conv-LSTM)算法对栅格内的用户分布、业务分布进行分析和预测,通过Actor-Critic架构对5G波束配置和优化策略进行评估,实现不同场景、时段的5G波束最佳能效,智能适应5G网络潮汐效应,实现“网随业动”。 As the key wireless technology of the 5th generation mobile communication(5G), Massive MIMO realizes the enhancement of space coverage by multiple narrow beams. However, the high energy consumption, multi-beam collisions and increased jamming of 5G Massive MIMO can cause the decrease of the energy efficiency and the increase of operating expense. Based on the 3D digital map, base-station engineering parameters, MR/MDT data reported by terminals, and user/service distribution, this paper constructs a 3D digital-twin grid. The Conv-LSTM(Convolutional Long Short Term Memory) algorithm is used to analyze and predict the user distribution and service distribution within the grids. By evaluating 5G beam configuration and optimization strategies through the Actor-Critical architecture, the optimal energy efficiency of 5G beams for different scenarios and periods is achieved, thus intelligently adapting to the tidal effect of 5G networks and realizing “network following service”.
作者 乔勇 葛昌帅 张天兴 鲁晓峰 QIAO Yong;GE Changshuai;ZHANG Tianxing;LU Xiaofeng(China Mobile Lianyungang Branch,Lianyungang Jiangsu 222004,China;China Mobile Jiangsu Co.,Ltd.,Nanjing Jiangsu 210000,China)
出处 《通信技术》 2022年第12期1642-1649,共8页 Communications Technology
关键词 大规模阵列天线技术 数字孪生 Actor-Critic算法架构 波束能效 Massive MIMO digital twin Actor-Critical algorithm architecture multi-beam energy efficiency
  • 相关文献

参考文献3

二级参考文献91

  • 1高西奇,尤肖虎,江彬,潘志文.面向后三代移动通信的MIMO-GMC无线传输技术[J].电子学报,2004,32(F12):105-108. 被引量:10
  • 2METIS. Mobile and wireless communications enablers for the 2020 information society. In: EU 7th Framework Programme Project, https://www.metis2020.com.
  • 3Wen T, Zhu P Y. 5G: A technology vision. Huawei, 2013. http://www.huawei.com/en/about-huawei/publications/ winwin-magazine/hw-329304.htm.
  • 4Wang C X, Haider F, Gao X Q, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 2014, 52: 122-130.
  • 53GPP. Physical Channels and Modulation (Release 11). 3GPP TS36.211. 2010.
  • 6Marzetta T L. How Much training is required for multiuser MIMO? In: Proceedings of the 40th Asilomar Conference on Signals, Systems, & Computers, Pacific Grove, 2006. 359-363.
  • 7Marzetta T L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun, 2010, 9: 3590-3600.
  • 8Ngo H Q, Larsson E G, Marzetta T L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans Commun, 2013, 61: 1436-1449.
  • 9You X H, Wang D M, Sheng B, et al. Cooperative distributed antenna systems for mobile communications. IEEE Wirel Commun, 2010, 17: 35-43.
  • 10You X H, Wang D M, Zhu P C, et al. Cell edge performance of cellular systems. IEEE J Sel Area Commun, 2011, 29: 1139-1150.

共引文献734

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部