期刊文献+

基于注意力机制的分层次交互融合多模态情感分析 被引量:5

Multimodal sentiment analysis of hierarchical interactive fusion based on attention mechanism
下载PDF
导出
摘要 针对基于视频的多模态情感分析中,通常在同一语义层次采用同一种注意力机制进行特征捕捉,而未能考虑模态间交互融合对情感分类的差异性,从而导致模态间融合特征提取不充分的问题,提出一种基于注意力机制的分层次交互融合多模态情感分析模型(hierarchical interactive fusion network based on attention mechanism,HFN-AM),采用双向门控循环单元捕获各模态内部的时间序列信息,使用基于门控的注意力机制和改进的自注意机制交互融合策略分别提取属于句子级和篇章级层次的不同特征,并进一步通过自适应权重分配模块判定各模态的情感贡献度,通过全连接层和Softmax层获得最终分类结果。在公开的CMU-MOSI和CMU-MOSEI数据集上的实验结果表明,所给出的分析模型在2个数据集上有效改善了情感分类的准确率和F1值。 In video-based multimodal sentiment analysis,the same attention mechanism is usually used to capture features at the same semantic level,and the difference in sentiment classification by interaction fusion between modals is not considered,which leads to insufficient feature extraction of fusion between modals.In response to the above problems,this paper proposes a hierarchical interactive fusion based on attention mechanism(HFN-AM).Firstly,the bidirectional gated recurrent unit is used to capture the time series information within each modal,and then the interactive fusion strategy of gating-based attention mechanism and improved self-attention mechanism are used to extract different levels of features belonging to the sentences and document level respectively.Furthermore,the affective contribution degree of each mode is determined by the adaptive weight distribution module.Finally,the final classification result is obtained through the fully connected layer and the Softmax layer.Experimental results show that the accuracy and F1 value of the presented analysis model have achieved significant improvement on the public CMU-MOSI and CMU-MOSEI datasets,indicating that the model can effectively improve the performance of sentiment classification.
作者 李文雪 甘臣权 LI Wenxue;GAN Chenquan(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,P.R.China)
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2023年第1期176-184,共9页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家自然科学基金(61702066,61903056) 重庆市教委科学技术重点研究项目(KJZD-M201900601)。
关键词 多模态情感分析 注意力机制 分层次交互融合 multimodal sentiment analysis attention mechanism hierarchical interactive fusion
  • 相关文献

参考文献7

二级参考文献37

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2唐慧丰,谭松波,程学旗.基于监督学习的中文情感分类技术比较研究[J].中文信息学报,2007,21(6):88-94. 被引量:136
  • 3B.Pang,L.Lee.Seeing stars:Exploiting class relationships for sentiment categorization with respect to rating scales[C]Proceedings of the ACL,2005:115-124.
  • 4Y.Bengio,R.Ducharme,P.Vincent,et al.A neural probabilistic language model[J].Journal of Machine Learning Research,2003,3:1137-1155.
  • 5Collobert R,Weston J.A unified architecture for natural language processing:Deep neural networks with multitask learning[C]//Proceedings of the 25th international conference on Machine learning.ACM,2008:160-167.
  • 6Mnih A,Hinton G E.A Scalable Hierarchical Distributed Language Model[C]//Proceedings of NIPS.2008::1081-1088.
  • 7Mikolov T,Karafiát M,Burget L,et al.Recurrent neural network based language model[C]//Proceedingsof INTERSPEECH.2010:1045-1048.
  • 8Mikolov T,Kombrink S,Burget L,et al.Extensions of recurrent neural network language model[C]//Proceedings of Acoustics,Speech and Signal Processing(ICASSP),2011 IEEE International Conference on.IEEE,2011:5528-5531.
  • 9Kombrink S,Mikolov T,Karafiát M,et al.Recurrent Neural Network Based Language Modeling in Meeting Recognition[C]//Proceedings of INTERSPEECH.2011:2877-2880.
  • 10Mikolov T,Chen K,Corrado G,et al.Efficient estimation of word representations in vector space[J].arXiv preprint arXiv:1301.3781,2013.

共引文献280

同被引文献44

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部