期刊文献+

基于加权贝叶斯分类器的LTE接入网中间人攻击检测研究 被引量:1

Research on Man-in-the-Middle Attack Detection in LTE Access Network Based on Weighted Bayesian Classifier
下载PDF
导出
摘要 由于LTE接入网的开放特性,任何人都可以访问其空中接口,因此很容易受到攻击者的控制并遭受网络攻击。其中,中间人攻击是典型的攻击方式之一。文章以检测LTE接入网的中间人攻击为研究目的,以较容易受到中间人攻击的接入过程为研究对象,分析信令和参数变化,并提取8个具有可识别性的特征。由于每个特征对分类结果的影响不同,因此文章利用遗传算法在组合优化问题上的优势,求解加权贝叶斯分类器的权值最优组合,改进加权参数的计算方法,从信令和日志角度提出了一种中间人攻击检测算法。文章将所提基于加权贝叶斯分类器的检测算法与常用中间人检测方法进行对比验证,结果表明,该算法在准确率和漏报率指标上明显优于其他算法。 The air interface of radio access network is exposed to the outdoors and can be accessed to anyone,which is easy to be controlled and attacked by others.Man-inthe-middle(MITM)attack is one of the typical attacks.This paper aimed to detect MITM attack on the air interface of LTE access network,and focused on the access process that was vulnerable to MITM attack.It analyzed the changes of signaling and parameters and extracted eight identifiable features.Considering the different effects of each feature on the classification results,this paper used the advantages of genetic algorithm in combination optimization problem to solve the optimal weights combination of weighted Bayesian classifiers,improved the calculation method of weighted parameters,and proposed a new MITM attack detection algorithm from the perspective of signaling and logging.Finally,this paper compared the detection algorithm based on the weighted Bayesian classifier with the common detection methods of MITM attack.The result shows that the algorithm in this paper is obviously superior to other algorithms in terms of accuracy and false negatives.
作者 彭诚 范伟 朱大立 杨芬 PENG Cheng;FAN Wei;ZHU Dali;YANG Fen(Institute of Information Engineering,Chinese Academy of Sciences,Beijing 100085,China;School of Cyber Security,University of Chinese Academy of Sciences,Beijing 100049,China;China Electronics Cyberspace Great Wall Co.,Ltd.,Beijing 102209,China)
出处 《信息网络安全》 CSCD 北大核心 2023年第2期1-10,共10页 Netinfo Security
基金 国家重点研发计划[2019YFB1005204]。
关键词 LTE接入网 中间人检测 加权的朴素贝叶斯 遗传算法 LTE access network man-in-the-middle detection weighted naive bayes genetic algorithm
  • 相关文献

参考文献3

二级参考文献16

  • 1束志恒,卢淋芗,张肃宇.粗糙集与模糊系统集成的化学模式分类方法及其应用[J].计算机与应用化学,2006,23(7):619-622. 被引量:1
  • 2Pinto P C, Nagele A, Dejori M, et al. Using a local discovery ant algorithm for Bayesian network structurelearning[J]. IEEE Trans on Evolutionary Computation, 2009, 13(4): 767-779.
  • 3Sangeeta B E, Shou-Ching S, Marco F R, et al. Use of Bayesian networks to probabilisticaUy model and improve the likelihood of validation of microarray findings by RT- PCR[J]. J of Biomedical Informatics, 2009, 42(2): 287- 295.
  • 4Chow C K, Lin C N. Approximating discrete probability distribution with dependence tree[J]. IEEE Trans on Information Theory, 1968, 14(3): 462-467.
  • 5Sprites P, Glymour C. An algorithm for fast recovery of sparse causal graphs[J]. Social Science Computating Review, 1991, 9(1): 62-72.
  • 6Chen X W, Gopalakrishna A, Lin X T. Improving Bayesian network structure learning with mutual information-based node ordering in the k2 algorithm[J]. IEEE Trans on Knowledge and Data Engineering, 2008, 20(5): 1-13.
  • 7Lobna B, Afif M, Faiez G, et al. Improving algorithms for structure learning in Bayesian networks using a new implicit score[J]. Expert Systems with Applications, 2010, 37(7): 5470-5475.
  • 8Suzuki J. A construction of Bayesian networks from database based on a MDL scheme[C]. Proc of the 9th Conf on Uncertainty in Artificial Intelligence. San Mateo: Morgan, 1993: 266-273.
  • 9Yan L J, Cercone N. Bayesian network modeling for evolutionary genetic structures[J]. Computers and Mathematics with Applications, 2010, 59(8): 2541-2551.
  • 10Tsamardinos I, Brown L E, Aliferis C E The max- min hillclimbing bayesian network structure learning algorithm[J]. Machine Learning, 2006, 65(1): 31-78.

共引文献18

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部