期刊文献+

基于改进贝叶斯网络的高维数据本地差分隐私方法 被引量:1

Method of Local Differential Privacy Method for High-Dimensional Data Based on Improved Bayesian Network
下载PDF
导出
摘要 文章提出一种基于改进贝叶斯网络的高维数据本地差分隐私方法,首先通过数据源差分隐私保护算法对用户端数据集进行扰动,生成扰动数据集,保护本地原始数据集隐私;然后通过改进的贝叶斯网络将高维数据集降维为多个低维属性集合;最后合成新数据集,使用人工蜂群算法对贝叶斯网络结构进一步改进。实验结果表明,该方法在数据实用性方面具有优势,且得到的贝叶斯网络收敛性更好。 In this paper,a local differential privacy method for high-dimensional data based on improved Bayesian network was proposed.By using the differential privacy protection algorithm of data source,the client data set was disturbed to generate the disturbed data set,so that the privacy of the local original data set was protected,and the privacy security of users was fundamentally protected.Then the high-dimensional data set was reduced to several low-dimensional attribute sets by the improved Bayesian network,and the new data set was finally synthesized,and the artificial bee colony algorithm was used to further improve the construction of Bayesian network structure.Finally,the experimental results show that the research method in this paper has advantages in data practicability,and the Bayesian network structure achieved better convergence.
作者 赵佳 高塔 张建成 ZHAO Jia;GAO Ta;ZHANG Jiancheng(Beijing Key Laboratory of Security and Privacy in Intelligent Transportation,Beijing Jiaotong University,Beijing 100044,China;School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China;Shandong Computer Science Center,Jinan 250014,China;Shandong Zhengzhong Information Technology Co.,Ltd.,Jinan 250014,China)
出处 《信息网络安全》 CSCD 北大核心 2023年第2期19-25,共7页 Netinfo Security
基金 国家自然科学基金青年科学基金[61502030] 中央高校基本科研业务费[2018JBM016] 山东省重大科技创新工程项目[2019JZZY020128]。
关键词 本地差分隐私 贝叶斯网络 人工蜂群算法 高维数据 local differential privacy Bayesian network artificial bee colony algorithm high-dimensional data
  • 相关文献

参考文献4

二级参考文献34

  • 1Dwork C, McSherry F, Nissim K, et al. Calibrating noise to sensitivity in private data analysis [C]//Proc of the 3rd Theory of Cryptography Conf (TCC 2006), Berlin: Springer, 2006: 363-385.
  • 2Dwork C. Differential privacy [C] I!Proc of the 33rd Int Colloquium on Automata, Languages and Programming (lCALP 2009). Berlin: Springer, 2006: 1-12.
  • 3Dwork C, Lei 1. Differential privacy and robust statistics [C]//Proc of the 41st Annual ACM Syrnp on Theory of Computing (STOC 2009). New York: ACM, 2009: 371-380.
  • 4Dwork C, Naor M. Reingold 0, et al. On the complexity of differentially private data release: Efficient algorithms and hardness results [C]//Proc of the 41 st Annual ACM Syrnp on Theory of Computing (STOC 2009). New York: ACM, 2009: 381-390.
  • 5XU 1, Zhang Z, Xiao X. et al. Differential private histogram publication [J]. The VLDB lournal. 2013. 22(6): 797-822.
  • 6Acs G. Chen R. Differentially private histogram publishing through lossy compression [C]//Proc of the 11th IEEE Int Conf on Data Mining (lCDM 2012), Piscataway. Nl: IEEE. 2012: 84-95.
  • 7Li C. Hay M. Miklau G. et al. A data- and workload-aware algorithm for range queries under differential privacy [J]. Proceedings of the Very Large Database Endowment. 2014. 7(5): 341-352.
  • 8Kellaris G. Papadopoulos S. Practical differential privacy via grouping and smoothing [J]. Proceedings of the Very Large Database Endowment. 2013. 6(5): 301-312.
  • 9Zhang X, Chen R. Xu J. et al. Towards accurate histogram publication under differential privacy [C]//Proc of the 14th SIAM Int Conf on Data Mining (SDM 2014). Philadelphia. PA: SIAM. 2014: 587-595.
  • 10Li C, Hay M, Rastogi V, et al. Optimizing linear counting queries under differential privacy [C]//Proc of the 41st Annual ACM Symp on Theory of Computing (PODS 2010). New York: ACM, 2010: 123-134.

共引文献27

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部