摘要
采用化学氧化法在NF上原位聚合PPy,再通过水热法在PPy/NF上原位合成不同Ni、Co比的碱式碳酸盐(NiCoCH),成功制备了一系列NiCoCH/PPy/NF复合电极材料。对电极材料进行了XRD、XPS、SEM和FTIR等表征,以及电化学性能测试。结果表明,NiCoCH中金属元素均为二价离子,其法拉第氧化还原反应为单电子转移过程,NiCoCH层间阴离子为CO_(3)^(2-);NiCoCH/PPy/NF复合电极材料呈现纳米片组装成的花球状微观结构,其为电解质离子的迁移和扩散提供了较大比表面积。测试结果表明,复合电极材料具有更好的电化学性能,当Ni、Co的物质的量之比为2∶1时NiCoCH/PPy/NF-2的性能较优,在1 A/g时比电容为1634 F/g,倍率性能为46.3%;同时在10 A/g时经5000次充放电循环后的比电容保持率为80.3%。
A series of NiCoCH/PPy/NF composite electrodes were successfully prepared by hydrothermal method with different Ni and Co ratios on PPy/NF after in-situ polymerization of PPy on NF using chemical oxidation method.The electrode materials were characterized by XRD,XPS,SEM and FT-IR,and their electrochemical properties were tested.The results show that all the metal elements in NiCoCH are divalent ions,and the Faraday REDOX reaction is a single electron transfer process.The anion between NiCoCH layers is CO_(3)^(2-).NiCoCH/PPy/NF composite electrode materials presents a flower spherical microstructure assembled by nanosheets.It provides a large specific surface area for the migration and diffusion of electrolyte ions.The electrochemical performance testing results show that the electrochemical performance of all composite electrode material is greatly improved compared with that of the eletrode materials without compositing.When the molar ratio of Ni and Co is 2∶1,the specific capacitance of the electrode materials attains 1634 F/g at 1 A/g,and the rate capability for this material is 46.3%,which shows that NiCoCH/PPy/NF-2 has good performance.Meanwhile,the specific capacitance retention rate for NiCoCH/PPy/NF-2 is 80.3%after 5000 charge-discharge cycles at 10 A/g.
作者
阳文娟
郭为民
李念
刘新梅
秦利平
YANG Wen-juan;GUO Wei-min;LI Nian;LIU Xin-mei;QIN Li-ping(College of Biological and Chemical Engineering,Guangxi University of Science and Techonology,Liuzhou 545006,China)
出处
《化学研究与应用》
CAS
北大核心
2023年第2期389-396,共8页
Chemical Research and Application
基金
国家自然科学基金项目(21661007)资助。
关键词
超级电容器
碱式碳酸盐
聚吡咯
水热法
电化学性能
supercapacitor
carbonate hydroxide
polypyrrole
hydrothermal method
electrochemical performance