期刊文献+

石蜡基燃料固液混合发动机燃面退移过程预示方法

Prediction method on the regression process of paraffin-based hybrid motor
下载PDF
导出
摘要 与传统固液混合发动机燃料相比,石蜡基燃料的液滴“夹带”机制对固液混合发动机燃料表面的“阻滞”效应存在缓解作用,有效提高了燃面退移速率。通过引入吹风系数加权因子表征了该缓解作用,建立了石蜡基燃料燃面退移过程预示方法,为阐述石蜡基燃料的燃面退移过程提供了理论基础。结果表明,当吹风系数加权因子n=0.4时,该方法的预示结果与实际测量值最为接近;石蜡基燃料“夹带”机制可以极大提高固体燃料燃面及附面层内的吸热量,缓解了“阻滞”效应,但使得燃气向燃面的辐射换热热流减弱;随着燃面退移,固液混合发动机燃料表面的“阻滞”效应逐渐减弱,石蜡基燃料“夹带”机制对于“阻滞”效应的缓解作用,随着该效应自身的减弱也逐渐减弱。 Compared with traditional solid-liquid hybrid fuel,droplet entrainment mechanism of paraffin-based fuel has the relief action on the blocking effect of hybrid motor fuel surface,which effectively improves the regression rate of the combustion surface.The relief action was characterized by introducing the weighted factor of blowing coefficient,and the prediction method on the regression process of paraffin-based hybrid motor was established,which can provide a theoretical basis for describing the fuel surface regression process of paraffin-based fuel.The results show that when the weighted factor of blowing coefficient n=0.4,the prediction result is closest to the actual measured value;droplet entrainment mechanism of the paraffin-based fuel can greatly improve heat transfer on the combustion surface and boundary layer,make blocking effect and radiation heat flux weakened;with the regression of fuel surface,the blocking effect on the fuel surface of hybrid motor is weakened,and the relief action of droplet entrainment mechanism of paraffin-based fuel on blocking effect is also gradually weakened as blocking effect itself weaken.
作者 张泽仁 田维平 王健儒 陆贺建 ZHANG Zeren;TIAN Weiping;WANG Jianru;LU Hejian(The 41st Institute of the Fourth Academy of CASC,Xi’an 710025,China;The Fourth Academy of CASC,Xi’an 710025,China)
出处 《固体火箭技术》 CAS CSCD 北大核心 2022年第6期920-928,共9页 Journal of Solid Rocket Technology
基金 航天科技集团预研项目。
关键词 固液混合发动机 石蜡基燃料 燃面退移 吹风系数 预示方法 hybrid rocket motor paraffin-based fuel regression blowing coefficient prediction method
  • 相关文献

参考文献6

二级参考文献41

  • 1田辉,蔡国飙,王慧玉,张振鹏.固液混合火箭发动机固体燃料的燃速计算[J].北京航空航天大学学报,2005,31(6):637-641. 被引量:9
  • 2李宇飞,何国强,刘佩进.固液混合发动机的新宠――石蜡基燃料[J].火箭推进,2005,31(4):36-40. 被引量:6
  • 3刘长宝,刘云飞,姚维尚.高固体含量丁羟推进剂性能研究[J].含能材料,2007,15(1):42-46. 被引量:10
  • 4杨玉新,胡春波,孙得川,蔡体敏,陈灏,刘洋.基于流-固耦合的混合火箭发动机固体燃料表面退移速率计算[J].固体火箭技术,2007,30(3):214-218. 被引量:7
  • 5孙得川.液体火箭发动机性能化学平衡/化学动力学分析[R].博士后研究工作报告,2003.
  • 6Strand L D,Jones M D,Ray R L,Cohen N S.Characterization of hybrid rocket internal heat flux and HTPB fuel pyrolysis[R].AIAA 94-2876.
  • 7Akyuzlu K M,Antoniou A,Martin M W.A physics based mathematical model to predict the regression rate in an ablating hybrid rocket solid fuel[R].AIAA 2001-3242.
  • 8Akyuzlu K M,Antoniou A,Martin M W.Determination of regression rate in an ablating hybrid rocket solid fuel using a physics-based comprehensive mathematical model[R].AIAA 2002-3577.
  • 9Antonis Antoniou,Kazim M Akyuzlu.Physics based comprehensive mathematical model to predict motor performance in hybrid rocket propulsion systems[R].AIAA 2005-3541.
  • 10Elands P J M,Korting P A O G,et al.Comparison of combustion experiments and theory in polyethylene solid fuel ramjets[J].AIAA J.,1990,6(6):732-739.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部