期刊文献+

基于属性加权回归的组团式城市轨道交通进出站客流预测模型研究 被引量:2

A Prediction Model of Entry and Exit Passenger Flows of Rail Transit Stations for Group-structured City Based on Attribute Weighted Regression
下载PDF
导出
摘要 为增强轨道交通进出站客流回归预测模型在组团式城市的适应性,利用多源数据细化和完善各影响因素的统计指标,更加精细地体现不同轨道车站之间的差异。针对组团式城市进出站客流在不同尺度下表现出截然不同的空间分布特征的特点,结合K近邻非参数回归和地理加权回归(Geographically Weighted Regression,GWR)模型,采用样本之间的属性差异表征异质性特征,提出一种属性加权回归(Attribute Weighted Regression,AWR)模型。重庆中心城区的案例分析表明:AWR模型能够兼顾样本集合在不同尺度下的空间分布特征,更适用于样本差异较大的情况,且对样本的空间相关特性没有特定的限制条件,针对组团式城市具有更强的适应性;相比于采用普通最小二乘法(Ordinary Least Squares,OLS)的多元线性回归模型和GWR模型,AWR模型对组团式城市轨道交通进出站客流需求的拟合优度和预测精度均显著提高,且误差的空间负相关性明显减弱,是轨道交通进出站客流预测方法的一种有益补充。 To enhance the adaptability of the regression model of entry and exit passenger flow prediction of rail transit stations for a group-structured city,this paper used multi-source data to refine the statistical indicators of various influencing factors,so as to accurately reflect the differences between different rail transit stations.Since entry and exit passenger flows for a group-structured city have different spatial distribution characteristics at different scales,the attribute differences between samples were used to characterize the heterogeneities of passenger flows,and an Attribute Weighted Regression(AWR)model was proposed by combing the K-nearest neighbors algorithm and Geographically Weighted Regression(GWR)model.The case study in the central area of Chongqing shows that the AWR model can consider the spatial distribution characteristics of sample sets at different scales,and it is more suitable for situations where the samples vary greatly.At the same time,the AWR model has no specific restrictions on spatial correlation characteristics,which makes it more adaptable to group-structured cities.Compared with the Multiple Linear Regression model based on the Ordinary Least Squares(OLS model)and GWR model,the AWR model can significantly improve the goodness of fit and the prediction accuracy of passenger flow demand of rail transit stations for the group-structured city,and the negative spatial correlation of prediction errors is significantly weakened.Therefore,the AWR model proposed is useful for the prediction of entry and exit passenger flow of urban rail transit stations.
作者 彭挺 周涛 蔡晓禹 PENG Ting;ZHOU Tao;CAI Xiao-yu(School of Traffic&Transportation,Chongqing Jiaotong University,Chongqing 400074,China;School of Smart City,Chongqing Jiaotong University,Chongqing 400074,China;Chongqing Transport Planning Institute,Chongqing 401147,China)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2023年第1期176-186,197,共12页 Journal of Transportation Systems Engineering and Information Technology
基金 住房和城乡建设部科技计划项目(2018-R2-014)。
关键词 城市交通 客流预测模型 属性加权回归 组团式城市 进出站客流 空间分布特征 urban traffic passenger flow prediction model attribute weighted regression group-structured city entry and exit passenger flow spatial distribution characteristics
  • 相关文献

参考文献7

二级参考文献38

  • 1钱林波.城市土地利用混合程度与居民出行空间分布──以南京主城为例[J].现代城市研究,2000,15(3):7-10. 被引量:40
  • 2曹玫,林小涵.基于遗传算法的城市轨道交通接运公交线网规划[J].武汉理工大学学报(交通科学与工程版),2005,29(4):568-570. 被引量:31
  • 3杨敏,陈学武,王炜,李文勇.基于人口和土地利用的城市新区交通生成预测模型[J].东南大学学报(自然科学版),2005,35(5):815-819. 被引量:37
  • 4McNally M G. The four step model[M]. Irvine, Center for Activity Systems Analysis, University of California, 2007.
  • 5Zhao F, Chow L F, Li M T, et el. Forecasting transit walk accessibility: a regression model alternative to the buffer method[J]. Transportation Research Record. Journal of the Transportation Research Board, 2003(1835) .34.
  • 6Gutifirrez J, Cardozob O D, Garcia-Palomares J C. Transit ridership forecasting at station level: an approach based on distance-decay weighted regression[J]. Journal of Transport Geography, 2011, 19. 1081.
  • 7Kuby M, Barranda A, Upchurch C. Factors influencing light- rail station boardings in the United States[J]. Transportation Research Part A: Policy and Practice, 2004, 38(3): 223.
  • 8Li J, Ye X, Ma J. Forecasting Method of Urban Rail Transit Ridership at Station-Level on the Basis of Back Propagation Neural Network [ C]//Transportation Research Board 94th Annual Meeting. Washington D C. Transportation Research Board, 2015: 669-669.
  • 9Filion P. Suburban mixed-use centres and urban dispersion: what difference do they make? [J]. Environment and Planning A, 2001, 33(1). 141.
  • 10Cervero R, Kockelman K. Travel demand and the 3Ds: density, diversity, and design [J]. Transportation Research Part D: Transport and Environment, 1997, 2(3) . 199.

共引文献73

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部