期刊文献+

分位数惩罚整合模型及其在商业银行系统性风险中的应用 被引量:1

Quantile Penalized Integrative Method and Its Application in the Systemic Risk of Commercial Banks
原文传递
导出
摘要 大数据通常由不同来源的数据组合而成,且具有高维特征,挖掘不同来源数据间的异质性和关联性并降维是亟需解决的问题.基于此,文章提出了分位数惩罚整合模型,并给出其模型表示和模型算法.该模型既可以对不同来源数据进行建模和变量选择,又同时考虑了不同来源数据间的异质性和关联性.数值模拟结果表明:分位数惩罚整合模型在预测性能和变量选择方面都具有明显的优势.此外,将该模型应用于商业银行系统性风险测度中发现,分位数惩罚整合模型在实际应用中也有较好的表现. Big data usually combines data from different sources,and has high dimensional characteristic.It is a problem that how to mining the heterogeneity and correlations of different datasets and achieves dimension reduction.Hence,this paper proposes quantile penalized integrative method.A set of modeling methodology,includes mathematics expression,parameter estimation,is studied in detail.It can not only simultaneously build up models and select variables using data from different sources,but also considering the heterogeneity and correlations of data from different sources.The numerical simulation results show that the quantile penalized integrative method has a significant advantage in both model prediction and variable selection.Finally,the quantile penalized integrative method is applied to the measurement of the systemic risk of commercial Banks.The results show that the quantile penalized integrative method has a good performance in practical application.
作者 蔡超 董皓天 李丽 CAI Chao;DONG Haotian;LI Li(School of Statistics,Shandong Technology and Business University,Yantai 264005)
出处 《系统科学与数学》 CSCD 北大核心 2022年第12期3397-3411,共15页 Journal of Systems Science and Mathematical Sciences
基金 国家社会科学基金项目(20BTJ052) 山东省社会科学规划研究项目(20CTJJ01)资助课题。
关键词 分位数回归 惩罚整合分析 系统性风险 Quantile regression Penalized integrative analysis Systemic risk
  • 引文网络
  • 相关文献

参考文献8

二级参考文献84

  • 1范小云,王道平,方意.我国金融机构的系统性风险贡献测度与监管——基于边际风险贡献与杠杆率的研究[J].南开经济研究,2011(4):3-20. 被引量:155
  • 2赵进文,韦文彬.基于MES测度我国银行业系统性风险[J].金融监管研究,2012(8):28-40. 被引量:35
  • 3李志辉,李萌.我国商业银行信用风险识别模型及其实证研究[J].经济科学,2005(5):61-71. 被引量:33
  • 4Fan J, Han F, Liu H. Challenges of Big Data analysis [J] National Science Review, 2014, 1 (2) :293 -314.
  • 5Yuan M, Lin Y. Model selection and estimation in regression with grouped variables [ J ]. Journal of the Royal Statistical Society: Series B, 2006, 68:49 -67.
  • 6Simon N, Friedman J, Hastie T and Tibshirani R. A sparse Group lasso [ J]. Journal of Computational and Graphical Statistics, 2013, 22(2) :231 -245.
  • 7Huang J, Ma S, Xie H and Zhang C. -H. A group bridge approach for variable selection [ J]. Biometrika, 2009, 96:339 - 355.
  • 8Ma S, Huang J, Song X. Integrative analysis and variable selection with multiple high-dimensional data sets [ J]. Biostatistics, 2011 a, 12(4) : 763 -775.
  • 9Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties [ J]. Journal of the American Statistical Association, 2001, 96 : 1348 - 1360.
  • 10Ma S, Dai Y, Huang J and Xie Y. Identification of breast cancer prognosis markers via integrative analysis [ J ]. Computational statistics and data analysis, 2012, 56 (9) : 2718 - 2728.

共引文献115

同被引文献32

引证文献1

相关主题

;
使用帮助 返回顶部