期刊文献+

基于迁移学习VGG-16的微表情识别 被引量:3

下载PDF
导出
摘要 为提高微表情识别精度更好地为微表情分类,提出迁移学习技术与VGG-16模型相结合的微表情识别方法。以CASME、CASMEⅡ作为数据集,在预处理阶段通过对图像进行几何变换、均衡化构建微表情数据集。利用迁移学习后的VGG-16为模型,用数据增强后的数据集,在相同参数环境下,与AlexNet、GooLeNet、ResNet-18模型做对比,探究了不同模型对8种微表情识别的影响,同时探究了不同数据集对模型的性能影响。实验结果:基于迁移学习的VGG-16模型,训练精度及训练损失值均优于参照模型,模型识别精度与数据集数量成正比。
作者 魏小明
机构地区 河北工程大学
出处 《电脑知识与技术》 2023年第1期31-34,共4页 Computer Knowledge and Technology
  • 相关文献

参考文献3

二级参考文献28

共引文献35

同被引文献13

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部