摘要
入侵检测系统(IDS)是网络空间安全的重要保障,随着机器学习在自然语言处理、图像识别等领域取得了良好成效,基于异常的IDS逐渐成为研究的主流。文章针对基于异常的IDS,提出了一种基于对抗攻击和黑盒模型的流量规避方案,使用生成对抗网络训练规避模型,并用黑盒模型的输出计算损失值,在多种机器学习分类器下均能实现良好的规避效果。该方案可作为扩展应用嵌入到IDS测试平台上,提升IDS测试平台对各类IDS设备测试的全面性。
出处
《电脑知识与技术》
2023年第1期88-90,共3页
Computer Knowledge and Technology