摘要
为了兼顾新能源驱动电机的运行性能和振动性能,对该型号驱动电机进行综合优化。采用数值计算方法分析8极48槽永磁同步电机的主要结构参数对电机运行性能和振动性能的影响,建立神经网络模型拟合电机结构参数与性能表现之间的映射关系,并基于测试数据集进行验证;使用粒子群算法优化电机的结构参数,从而获得驱动电机振动性能和运行性能之间的非劣最优解。优化后的电机与初始样机相比在驱动性能基本保持不变的基础上,转矩脉动和振动位移方面都有了明显的优化。
In order to take into account the operation and virbation performance of the new energy drive motor,the drive motor of the model was comprehensively optimized.The numerical calculation method was used to analyze the influence of the main structural parameters of the 8-pole 48-slot synchronous motor on the different performance of the motor,and a neural network model was established to fit the mapping relationship between the motor's structural parameters and performance.The particle swarm algorithm was used to optimize the structural parameters of the motor to obtain a non-inferior optimal solution between the vibration performance and the running performance of the drive motor.Compared with the original prototype,the optimized motor had obvious optimization in terms of torque ripple and vibration displacement.
作者
胡文韬
李华
郑东
华春蓉
沈思思
HU Wentao;LI Hua;ZHENG Dong;HUA Chunrong;SHEN Sisi(School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China;Central Laboratory of Petrochemical Complex,Shengli Oilfield,Dongying City,Shandong Province,Dongying 257000,China;Sichuan Center for Patent Examination Cooperation of the Patent Office of the State Intellectual Property Office,Chengdu 610014,China)
出处
《微特电机》
2023年第2期26-30,37,共6页
Small & Special Electrical Machines
关键词
永磁同步电机
电磁振动
粒子群算法
神经网络
多目标优化
permanent magnet synchronous motor(PMSM)
electromagnetic vibration
particle swarm algorithm
neural network
multi-objective optimization