期刊文献+

基于RWNN补偿的下肢外骨骼滑模控制 被引量:1

Sliding Mode Control for Lower Limb Exoskeleton Based on RWNN Compensation
下载PDF
导出
摘要 针对下肢外骨骼系统精确动力学模型难以得到,且易受干扰等不确定性因素影响,提出一种基于递归小波神经网络(recurrent wavelet neural network,RWNN)补偿的滑模控制方法。结合拉格朗日原理和气动肌肉驱动特性,建立外骨骼系统模型,并将模型分为结构参数已知的标称部分和结构参数未知的不确定部分;对于标称部分,采用滑模控制方法进行控制,对于不确定部分,采用递归小波神经网络进行逼近;根据Lyapunov稳定性原理,证明了闭环控制系统的稳定性。搭建实验平台进行验证,结果表明外骨骼系统能够较好地跟踪期望轨迹,验证了所提控制方法的有效性。 A recurrent wavelet neural network(RWNN)compensation based sliding mode control method is proposed in view of the difficulty in obtaining accurate dynamic model of lower limb exoskeleton system and the recurrent wavelet neural network(RWNN)compensation.Combined with Lagrange principle and pneumatic muscle driving characteristics,the model of lower limb exoskeleton is established,and the model is divided into the nominal part with known-structural parameters and the uncertain part with unknown-structural parameters.The sliding mode control method is used to control the nominal part,and the recursive wavelet neural network is used to approximate the uncertain part.According to the Lyapunov stability principle,the stability of the closed-loop control system is proved.The experimental results show that the exoskeleton system can track the desired trajectory well,which verifies the effectiveness of the proposed control method.
作者 张燕 王岩 陈玲玲 刘作军 张瑞鑫 ZHANG Yan;WANG Yan;CHEN Ling-ling;LIU Zuo-jun;ZHANG Rui-xin(School of Artificial Intelligence and Data Science,Hebei University of Technology,Tianjin 300130,China;Tianjin Internet News Research Center,Tianjin 300221,China;Engineering Research Center of Intelligent Rehabilitation and Detecting Technology,Ministry of Education,Tianjin 300130,China)
出处 《控制工程》 CSCD 北大核心 2023年第1期39-46,共8页 Control Engineering of China
基金 国家自然科学基金资助项目(61703135,61503118,61703134,61773151) 河北省自然科学基金资助项目(F2017202119,F2016202327)。
关键词 下肢外骨骼 气动肌肉 滑模控制 递归小波神经网络 Lower limb exoskeleton pneumatic muscle sliding mode control recurrent wavelet neural network
  • 相关文献

参考文献9

二级参考文献58

  • 1李雪琴,殷国富,刘爽,杨随先.基于雅可比矩阵分析法的多关节机器人机构设计技术研究[J].四川大学学报(工程科学版),2011,43(S1):252-256. 被引量:6
  • 2肖本贤,张松灿,刘海霞,赵明阳,王群京.基于动力学系统的非完整移动机器人的跟踪控制[J].系统仿真学报,2006,18(5):1263-1266. 被引量:16
  • 3邓韧,李著信,樊友洪.一类递归小波神经网络的稳定性研究[J].应用数学和力学,2007,28(4):428-432. 被引量:4
  • 4隋立明,张立勋.气动肌肉驱动仿生关节的理论分析[J].机床与液压,2007,35(6):113-116. 被引量:8
  • 5HUSSAIN S, XIE Shengquan, LIU Guangyu. Robot assisted treadmill training: mechanisms and training strategies [ J ] Medical Engineering & Physics, 2011,33 : 527-533.
  • 6JEZERNIK S, COLOMBO G, MORAR M. Automatic gaitpattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis [ J ]. IEEE Transactions on Robotics and Automation, 2004, 20(3): 574-582.
  • 7BANALA S, AGRAWAL S, SEOK H K, SCHOLZ J. Novel gait adaptation and neuromotor training results using an active leg exoskeleton [ J ]. IEEE/ASME Transactions on Mechatronics, 2010, 15 (2) :216-225.
  • 8SCHMIDT H, SOROWKA D, HESSE S, et al. Robotic walking simulator for neurological gait rehabilitation [ C ]// Proceedings of the 2nd Joint EMBS/BMES Conference. Huston, USA, 2002 : 2356-2357.
  • 9YOON J, NOVANDY B, YOON C H, et al. A 6-DOF gait rehabilitation robot with upper and lower limb connections that allows walking velocity updates on various terrains [ J ]. IEEE/ ASME Transactions on Mechatronics, 2010, 15(2) :201-215.
  • 10PONS J L. Rehabilitation exoskeletal robotics [ J ]. IEEE Engineering in Medicine and Biology Magazine, 2010, 29 (3) :57-63.

共引文献235

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部