摘要
针对海鸥优化算法(SOA)寻优路径单一、寻优精度较低、易陷入局部最优等问题,提出新的多方向螺旋搜索的混沌海鸥优化算法(Multi-directional Exploring Seagull Optimization Algorithm Based On Chaotic Map MESOA).首先,利用混沌序列对海鸥种群进行初始化,令海鸥个体分布更加均匀,能够更加准确地接近目标;其次,让海鸥选择不同方向的螺旋飞行路径,使海鸥飞行路径不再单一,增加算法多样性;最后,根据算法收敛情况进行围绕目标的小范围搜索,避免算法过早收敛,提高算法跳出局部最优的能力.本文选取了8个基准测试函数对算法进行了实验,以不同角度对于算法的性能进行测试,并使用Wilcoxon秩和检验来证明算法的性能,结果表明了MESOA算法改进在寻优能力、稳定性、鲁棒性等方面均有提升.
The seagull optimization algorithm(SOA)has problems of single searching path, low accuracy, easily falling into local optima, multi-directional exploring seagull optimization algorithm based on chaotic map(MESOA)is proposed.First, the original seagull population is created according to the chaotic sequences and seems to be more even-distributed, so that the individuals approach the target more accurately;secondly, the seagulls have different spiral flight trajectories, which enrichs searching diversity of the algorithm;finally, a local searching strategy is adopted according to the the positions of individual seagulls, which helps avoid premature convergence of the algorithm.This paper selects 8 benchmark test functions to conduct experiments on the algorithm, test the performance of the algorithm from different angles, and use the Wilcoxon rank sum test to prove the performance of the algorithm.The results show that the improvement of the MESOA algorithm is in the optimization ability, stability, Robustness and other aspects have been improved.
作者
张冰洁
何庆
戴松利
杜逆索
ZHANG Bing-jie;HE Qing;DAI Song-li;DU Ni-suo(College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China;Guizhou Provincial Key Laboratory of Public Big Data,Guizhou University,Guiyang 550025,China)
出处
《小型微型计算机系统》
CSCD
北大核心
2023年第3期536-543,共8页
Journal of Chinese Computer Systems
基金
国家自然科学基金项目(62166006)资助
贵州省省级科技计划项目(黔科合ZK字[2021]335)资助
贵州省科技计划项目重大专项项目(黔科合重大专项字[2018]3002,[2016]3022)资助
贵州省公共大数据重点实验室开放课题项目(2017BDKFJJ004)资助
贵州省教育厅青年科技人才成长项目(黔科合KY字[2016]124)资助
贵州大学培育项目(黔科合平台人[2017]5788)资助。
关键词
海鸥优化算法
混沌映射
螺旋搜索
元启发算法
seagull optimization algorithm
chaotic mapping
spiral search
swarm intelligence algorithm