期刊文献+

广义高阶有限条传递矩阵法

Generalized High-order Finite Strip Transfer Matrix
下载PDF
导出
摘要 针对广义边界条件下的薄板屈曲问题,通过采用半解析广义高阶有限条法,结合传递矩阵法,推导出高阶有限条弹性刚度矩阵以及几何刚度矩阵,提出了矩形薄板屈曲分析的广义高阶有限条传递矩阵法。结合实例对提出的广义高阶有限条传递矩阵法和有限元法进行对比,分析了广义边界条件下矩形薄板的屈曲载荷因子与屈曲模态,发现两种方法的结果具有很好的一致性。同时,算例证明了广义高阶有限条传递矩阵法在单元数较少时计算结果也能与有限元法吻合较好,并且其计算精度比有限条传递矩阵法更高,证明了此方法可计算广义边界条件的矩形薄板屈曲问题。 By using the semi-analytical generalized high-order finite strip method and combined with the transfer matrix method,the elastic stiffness matrix and geometric stiffness matrix of high-order finite strips was derived.Then generalized high-order finite strip transfer matrix method for buckling analysis of rectangular thin plates was proposed for the buckling problem of thin plates under generalized boundary conditions.The buckling load factor and buckling modes of rectangular thin plate under generalized boundary conditions were compared and analyzed by the proposed generalized high-order finite strip transfer matrix method and finite element method.It was found that the results of the two methods are in good agreement.Therefore,these examples proved that the calculation results of the generalized high-order finite strip transfer matrix method can be in good agreement with the finite element method when the number of elements is small.And its calculation accuracy is higher than the finite strip transfer matrix method.It also proved that this method can calculate the buckling problem of rectangular thin plates with generalized boundary conditions.
作者 刘冬梅 何斌 朱词 薛海兵 范冬梅 Liu Dongmei;He Bin;Zhu Ci;Xue Haibing;Fan Dongmei(Construction Engineering and Management School,Jiangsu Vocational College of Business,Nantong 226011,China;Energy and Power Engineering School,Nanjing University of Science and Technology,210014,China)
出处 《特种结构》 2023年第1期38-44,共7页 Special Structures
关键词 广义高阶有限条法 传递矩阵法 广义边界 屈曲模态 屈曲临界载荷 Generalized high-order finite strip method Transfer matrix method Generalized boundary Buckling modes Buckling critical loads
  • 相关文献

参考文献2

二级参考文献5

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部