期刊文献+

线驱动软体机器人工作空间与最大理论负载分析

Analysis of Workspace and Maximum Theoretical Load of Wire Driven Continuous Soft Robot
下载PDF
导出
摘要 针对软体机器人建模复杂,难以对机器人性能指标进行分析的问题,提出了基于SOFA仿真框架的软体机器人工作空间和最大理论负载的计算方法。首先,设计了线驱动连续型软体机器人,拉动线缆使线缆长度发生变化,迫使机器人本体产生形变,实现对物体的操作;然后,提出了线驱动软体机器人的Monte Carlo工作空间算法,得到工作空间内的离散点;其次,通过α-shape算法对离散点进行三维重构,并提出了以边界曲面的体积为指标确定了参数α的最优值,计算曲面体积得到了工作空间大小;最后,以拉伸量允许的范围内能否实现对不同质量物体的提升作为最大负载衡量标准,对软体机器人的最大理论负载进行了理论分析。实验结果表明,相较于传统刚体机器人,本文设计的线驱动软体机器人工作空间分布更加均匀;提出的算法能够准确快速地计算软体机器人的工作空间。 Aiming at the problem that the modelling of soft robot is complex and it is difficult to analyse the performance index of the robot, a calculation method of the working space and the maximum theoretical load of the soft robot based on the SOFA simulation framework is proposed.First, a wire-driven continuous soft robot is designed.Pulling the cable changes the length of the cable, forcing the robot body to deform to realize the operation of the object.Then, the Monte Carlo workspace algorithm of the wire-driven soft robot is proposed, and the discrete points in the workspace are obtained.Secondly, the discrete points are reconstructed in 3D by the α-shape algorithm, and the optimal value of the parameters α is determined by taking the volume of the boundary surface as an index, and the size of the workspace is obtained by calculating the volume of the surface.Finally, the theoretical analysis of the maximum theoretical load of the soft robot is carried out by taking whether the lifting of objects of different masses can be achieved within the allowable range of the stretching amount as the maximum load criterion.The experimental results show that: Compared with the traditional rigid robot, the workspace distribution of the wire-driven soft robot designed in this paper is more uniform;the proposed algorithm can calculate the workspace of the soft robot accurately and quickly.
作者 李衡金 汤卿 LI Heng-jin;TANG Qing(School of Mechanical Engineering,Sichuan University,Sichuan 610065,China)
出处 《组合机床与自动化加工技术》 北大核心 2023年第2期138-142,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 四川省科技计划项目(2020YFG0116,2021YFG0074)。
关键词 软体机器人 工作空间 边界曲面 α-shape算法 soft robot workspace boundary surface α-shape algorithm
  • 相关文献

参考文献2

二级参考文献15

  • 1曹毅,李秀娟,宁祎,杨冠英.三维机器人工作空间及几何误差分析[J].机械科学与技术,2006,25(12):1458-1461. 被引量:39
  • 2Cao Yi, Lu Ke, Li Xiujuan, et al. Accurate numerical methods for computing 2D and 3D robot workspace [ J]. International Journal of Advanced Robotic Systems, 2011, 8(6) : 1 - 13.
  • 3Cao Y, Zang H, Wu L, et al. An engineering oriented method for the three dimensional workspace generation of robot manipulator [ J ]. Journal of Information and Computational Science, 2011,8 ( 1 ) :S1 - 61.
  • 4Kohli D, Ming-Shu H. The Jacobian analysis of workspaces of mechanical manipulators [ J]. Mechanism and Machine Theory, 1987,22(3) : 265 -275.
  • 5Ahdel-Malek K, Yeh H J, Othman S. Interior and exterior boundaries to the workspace of mechanical manipulators[ J] , Robotics and Computer Integrated Manufacturing, 2000,16 (5) : 365 - 376.
  • 6Yang Jingzhou, Abdel-Malek K, Zhang Yunqing. On the workspace boundary determination of serial manipulators with non- unilateral constraints [ J ]. Robotics and Computer-Integrated Manufacturing, 2008,24 ( 1 ) : 60 - 76.
  • 7Rastegarl J, Perel D. Generation of manipulator workspace boundary geometry using the Monte Carlo method and interactive computer graphics [ J ]. ASME Journal of Mechanical Design, 1990,112 ( 3 ) : 452 - 454.
  • 8David G, Chung C D N. Determining manipulator workspace boundaries using the Monte Carlo method and least squares segmentation[ C]//Proceedings of the ASME Robotics, Kinematics, Dynamics and Controls, 1994:141 -146.
  • 9赵燕江,张永德,姜金刚,邵俊鹏.基于Matlab的机器人工作空间求解方法[J].机械科学与技术,2009,28(12):1657-1661. 被引量:72
  • 10印峰,王耀南,余洪山.基于蒙特卡罗方法的除冰机器人作业空间边界提取[J].控制理论与应用,2010,27(7):891-896. 被引量:18

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部