期刊文献+

Correlate phonon modes with ion transport via isotope substitution

原文传递
导出
摘要 Understanding the correlations between lattice dynamics(phonons) and ion transport is important for improving the ionic conductivity of solid-state electrolytes. This understanding largely hinges on selective tuning or excitation of specific phonon modes without changing the chemical environments of atoms, which is, however, challenging to be achieved. In this work, we used ~6Li isotope substitution to selectively change the phonon properties associated with lithium, without introducing additional defects or disorders which would affect the ion transport properties. The changes in the phonon modes were then related to ion transport properties through impedance measurements and deep potential molecular dynamics simulations. Our results demonstrated that lower lithium vibration frequency leads to higher ionic conductivity and lower activation energy in the garnet solid-state electrolyte of Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12). We furthermore quantified the effect of lithium-related phonons on the migration entropy and attempt frequency, which would be difficult to be achieved otherwise. Our work suggests an effective isotope substitution method to decouple the effect of phonon modes to ion transport from that of other complex structural factors. The obtained insights can contribute to innovative understanding of ion transport in solids and strategies to optimize the ionic conductivity of solid-state electrolytes.
出处 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第3期768-777,共10页 中国科学(化学英文版)
基金 supported by the National Natural Science Foundation of China(22222204).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部