期刊文献+

基于机器学习的风电机组齿轮箱故障预警 被引量:1

Fault Early Warning of Wind Turbine Gearbox Based on Machine Learning
下载PDF
导出
摘要 风电机组长期工作在恶劣的环境中,导致故障频发,运用合理高效的方法对风电机组部件进行故障预警,具有十分重要的现实意义。首先利用3σ-中位数准则对数据进行预处理,然后利用非线性状态估计(nonlinear state estimate technology, NSET)方法对风电机组的齿轮箱温度进行预测。当齿轮箱工作出现异常时,预测值与实际值的残差增大,超出预先设定的阈值发出报警信息。实验结果表明,提出的3σ-中位数准则组合法能够有效识别数据中的异常值,效率高,清洗效果好。对处理后的数据进行NSET建模,利用NSET模型实现了齿轮箱的故障预警。 Wind turbines work in harsh environments for a long time, resulting in frequent failures. It is of great practical significance to use reasonable and efficient methods for early-warning wind turbine components. In this paper, the 3σ-median combination method is used to preprocess the data, and then the nonlinear state estimate technology(NSET) method is used to predict the gearbox temperature of wind turbine. When the gearbox works abnormally, the residual error between the predicted value and the actual value increases, and an alarm message is sent out when the gearbox exceeds the preset threshold value. The experimental results show that the 3σ-median criterion combination method proposed in this paper can effectively identify the outliers in the data, which has high efficiency and good cleaning effect. Then, the processed data are modeled by NSET,and the gearbox fault warning is realized by using the NSET model.
作者 王少科 王培光 张照彦 田亚茹 WANG Shao-ke;WANG Pei-guang;ZHANG Zhao-yan;TIAN Ya-ru(College of Electronic Information Engineering,Hebei University,Baoding Hebei 071002,China;Baoding Key Laboratory of digital intelligent operation and maintenance of wind power generation,Hebei University,Baoding Hebei 071002,China)
出处 《计算机仿真》 北大核心 2023年第1期99-106,共8页 Computer Simulation
基金 国家自然科学基金(11271106) 河北省自然科学基金重点项目(A2020201021) 河北省高层次人才资助项目(B2020005004)。
关键词 非线性状态估计 故障预警 齿轮箱 数据清洗 Nonlinear state estimate technology Fault warning Gearbox Data cleaning
  • 相关文献

参考文献8

二级参考文献98

  • 1夏冬,吴俊勇,贺电,宋洪磊,冀鲁豫.一种新型的风电功率预测综合模型[J].电工技术学报,2011,26(S1):262-266. 被引量:23
  • 2张照煌,丁显,刘曼,曾菊瑛.基于小波变换的风电机组传动系统故障诊断与分析[J].应用基础与工程科学学报,2011,19(S1):210-218. 被引量:16
  • 3韦姝,魏海坤,朱婷婷,张驰.考虑风速分布与日非平稳性的风速数据预处理方法研究[J].电网与清洁能源,2015,31(3):93-98. 被引量:3
  • 4武艳强,黄立人.时间序列处理的新插值方法[J].大地测量与地球动力学,2004,24(4):43-47. 被引量:41
  • 5唐新安,谢志明,王哲,吴金强.风力机齿轮箱故障诊断[J].噪声与振动控制,2007,27(1):120-124. 被引量:47
  • 6Crabtree C J, Feng Y, Tavner P J. Detecting incipient wind turbine gearbox failure., a signal analysis method for on-line condition monitoring[C]//Proceeding of European Wind Energy Conference, Poland, 2010.
  • 7Hameed Z, Hong Y S, Cho Y M, et al. Condition monitoring and fault detection of wind turbines and related algorithms: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 1-39.
  • 8Amirat Y, Benbouzid M, A1-Ahmar E. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2629-2636.
  • 9Lu Bin, Li Yaoyu, Wu Xin. A review of recent advance in wind turbine condition monitoring and fault diagnosis [C]//Proceedings of Power Electronics and Machines in Wind Application, Lincoln, 2009: 1-7.
  • 10Zaher A, McArther S D J, Infield D G, et al. Online wind turbine fault detection through automated scada data analysis[J]. Wind Energy , 2009, 12(6): 574-593.

共引文献364

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部