期刊文献+

一种融合Resnet-50与SVR的年龄估计 被引量:3

An Age Estimation Combining Resnet-50 and SVR
下载PDF
导出
摘要 为提高在非受限条件下的人脸图像年龄估计的精度,提出一种融合残差网络与支持向量回归的年龄估计方法(Resnet-50_SVR)。Resnet-50网络是一种解决神经网络结构退化问题的成熟算法,使用Resnet-50网络提取面部更佳的年龄特征,即使用Resnet-50结构在ImageNet数据集上对网络模型进行预训练,再将预训练的模型在MORPH数据集上进行微调,并结合SVR算法在FG-NET数据集上进行测试。实验结果表明,Resnet-50_SVR对人脸图像的年龄估计效果良好。 In order to improve the accuracy of age estimation of face images under unrestricted conditions, proposing an age estimation method that combines residual network and support vector regression(Resnet-50_SVR). Resnet-50 network is a mature algorithm to solve the problem of degenerate neural network structure, using the Resnet-50 network to extract better age features of the face, that is to say, the network model was pretrained by Resnet-50 structure on the ImageNet dataset, and finetuned on the MORPH dataset, and combined with the SVR algorithm on the FG-NET dataset for testing. The experimental results demonstrated that Resnet-50_SVR is effective in age estimation of face images.
作者 邵定琴 张乾 岳诗琴 范玉 SHAO Ding-qin;ZHANG Qian;YUE Shi-qin;FAN Yu(School of Data Science and Information Engineering,Guizhou Minzu University,Guiyang Guizhou 550025,China)
出处 《计算机仿真》 北大核心 2023年第1期272-277,共6页 Computer Simulation
基金 国家自然科学基金项目(61802082,61263034,61762020)。
关键词 残差网络 年龄特征 非受限条件 年龄估计 Residual network Age characteristics Unrestricted conditions Age estimation
  • 相关文献

参考文献7

二级参考文献70

  • 1徐蓉,姜峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(1):44-51. 被引量:67
  • 2胡斓,夏利民.基于人工免疫识别系统的年龄估计[J].计算机工程与应用,2006,42(26):186-188. 被引量:4
  • 3王俊艳,苏光大,林行刚.人脸图像年龄估计[J].清华大学学报(自然科学版),2007,47(4):526-529. 被引量:6
  • 4Ramanathana N, Chellapa R, Biswas S. Computational methods for modeling facial aging: a survey [ J ]. Journal of Visual Language and Computing, 2009, 20 ( 3 ) : 131-144.
  • 5Kwon Y H, Lobo N. Age classification from facial images [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Seattle, USA : IEEE Computer Society Press, 1994 : 762-767.
  • 6Lanitis A, Taylor C, Cootes T. Toward automatic simulation of aging effects on face images [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4) : 442-455.
  • 7Zhuang X D, Zhou X, Hasegawa-Johnson M, et al. Face age estimation using patch-based hidden markov model supervectors [C]// Proceedings of 19 th International Conference on Pattern Recognition, Tampa : IEEE Press, 2008 : 1-4.
  • 8Fu Y, Huang T S. Human age estimation with regression on discriminative aging manifold [ J ]. IEEE Transactions on Multimedia, 2008, 10(4): 578-584.
  • 9Guo G D, Fu Y, Dyer C, et al. Image-based human age estimation by manifold learning and locally adjusted robust regression [J]. IEEE Transactions on Image Processing, 2008, 17(7) :1178-1188.
  • 10Guo G D, Mu G, Fu Y, Huang T S. Human age estimation using bio-inspired features [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Miami : IEEE Computer Society Press, 2009 : 112-119.

共引文献46

同被引文献17

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部