摘要
为提高在非受限条件下的人脸图像年龄估计的精度,提出一种融合残差网络与支持向量回归的年龄估计方法(Resnet-50_SVR)。Resnet-50网络是一种解决神经网络结构退化问题的成熟算法,使用Resnet-50网络提取面部更佳的年龄特征,即使用Resnet-50结构在ImageNet数据集上对网络模型进行预训练,再将预训练的模型在MORPH数据集上进行微调,并结合SVR算法在FG-NET数据集上进行测试。实验结果表明,Resnet-50_SVR对人脸图像的年龄估计效果良好。
In order to improve the accuracy of age estimation of face images under unrestricted conditions, proposing an age estimation method that combines residual network and support vector regression(Resnet-50_SVR). Resnet-50 network is a mature algorithm to solve the problem of degenerate neural network structure, using the Resnet-50 network to extract better age features of the face, that is to say, the network model was pretrained by Resnet-50 structure on the ImageNet dataset, and finetuned on the MORPH dataset, and combined with the SVR algorithm on the FG-NET dataset for testing. The experimental results demonstrated that Resnet-50_SVR is effective in age estimation of face images.
作者
邵定琴
张乾
岳诗琴
范玉
SHAO Ding-qin;ZHANG Qian;YUE Shi-qin;FAN Yu(School of Data Science and Information Engineering,Guizhou Minzu University,Guiyang Guizhou 550025,China)
出处
《计算机仿真》
北大核心
2023年第1期272-277,共6页
Computer Simulation
基金
国家自然科学基金项目(61802082,61263034,61762020)。
关键词
残差网络
年龄特征
非受限条件
年龄估计
Residual network
Age characteristics
Unrestricted conditions
Age estimation