期刊文献+

基于特征的地铁门与安全门间隙异物检测方法

A Foreign Object Detection Way Based on Feature for the Gap between Subway and Safety Doors
下载PDF
导出
摘要 在城市轨道交通运营过程中,存在人或物等异物被夹挤/遗留在安全门与地铁车门之间的可能性,造成安全事故.为此,提出一种基于关键特征匹配的地铁车门与安全门间隙的异物检测方法.该方法首先对检测图像与参考图像进行SURF特征提取与匹配后,引入一种基于局部信息的误匹配点剔除法,以提炼出用于后续异物检测的关键匹配点;然后,基于特征匹配点相对数量和特征点分布面积信息对待检测区域进行异物检测.试验结果表明,本文方法可有效地对地铁车门与安全门之间的间隙进行异物入侵检测,具有一定的实际应用价值. During operation of urban rail transit,there is a possibility that people or objects will be squeezed/left between a safety gate and a subway gate.In this work,a foreign object detection method is proposed based on SURF feature extraction and matching algorithm for the gap between subway doors and safety doors.After the feature extraction and matching of the image to be detected and the reference image,a method of removing the mismatching points based on local information is given to extract the key points for subsequent foreign object detection.Then,a foreign object detection method in the area to be detected based on the relative number of matching points and the distribution area of feature points is proposed.The experiments show that the method can detect the foreign object intrusion of the foreign object detection method between subway doors and safety doors,and the proposed method is applicable.
作者 张嘉超 张伟 ZHANG Jia-chao;ZHANG Wei(AI Industrial Technology Research Institute,Nanjing Institute of Technology,Nanjing 211167,China;Nanjing Kangni Mechanical and Electrical Company Limited,Nanjing 210009,China)
出处 《南京工程学院学报(自然科学版)》 2022年第4期35-40,共6页 Journal of Nanjing Institute of Technology(Natural Science Edition)
基金 国家自然科学基金项目(62002160)。
关键词 特征匹配 SURF算法 地铁车门 安全门 异物检测 feature matching SURF algorithm subway gate safety gate foreign object detection
  • 相关文献

参考文献6

二级参考文献27

  • 1刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践,2005,25(6):54-58. 被引量:122
  • 2Hai-hui C. Mechanism Design and Mechanics Model of the Platform Screen Doors for Subways [J]. Journal of South ChinaUniversity of Technology (Natural Science), 2004(4): 018.
  • 3Gall J, Lempitsky V. Class-specific hough forests for object detection[M]. London : Decision Forests for Computer Vision and Medical Image Analysis, 2013: 143-157.
  • 4Redo-Sanchez A, Laman N, Schulkin B, et al. Review of Tera- hertz Technology Readiness Assessment and Applications[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34 (9) : 500-518.
  • 5Hogeweg L, S~inchez C I, Melendez J, et al. Foreign object detection and removal to improve automated analysis of chest radiographs[J]. Medical physics, 2013, 40(7): 071901.
  • 6沈阳西东控制技术有限公司.地铁站台屏蔽门与列车门之间激光障碍物监测控制系统[P[.中国:CNl0146369lB,2013—03—20.
  • 7Shen J Q and Hau L C. Vehicle sensing method for detecting a pedestrian impact[P]. U.S : US7380633 B2 , 2006-2-14.
  • 8黎卓虹.屏蔽门防夹人激光探测装置安装方案探讨[J].中国高新技术企业,2009(19):46-47. 被引量:9
  • 9汤一平,富吉勇,陈耀宇.基于全方位计算机视觉的遗留物检测系统[J].计算机测量与控制,2010,18(3):517-519. 被引量:13
  • 10舒蕾,陈千,王江涛.地铁屏蔽门和车门联动危险倾向性分析[J].都市快轨交通,2010,23(6):58-61. 被引量:3

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部