摘要
为了提高MEMS-INS/GPS紧耦合组合导航系统在城市区域中因为GPS信号短时中断或被干扰时的性能,提出了一种基于Kalman滤波的抗差滤波器模型-Kalman抗差滤波器。在Kalman抗差滤波流程中,构建了具有误差检测和分离功能的Kalman滤波器来应对包括伪距和伪距率等GPS测量的突发故障,通过自适应因子向量调整测量噪声获得高精度的导航解。在城市公路上开展了现场试验,对Kalman抗差滤波器的可用性进行了测试。相较于常规的Kalman滤波器,使用Kalman抗差滤波器的紧耦合组合导航系统水平位置误差下降超过30%,高程位置误差的降低大约50%,速度误差下降了17.5%。Kalman抗差滤波器能够有效的降低城市区域中MEMS-INS/GPS紧耦合组合导航系统的导航解误差。
A robust filter model based on Kalman filter,named rubust Kalman filter(RFK),is proposed to improve the performance of tightly coupled MEMS-INS/GPS integrated navigation system in urban areas with the GPS signal challenge of short outages or disturbances.In the RKF procedure,the Kalman filter(Kalman filter,KF)with error detection and isolation(error detection and isolation,EDI)is constructed to overcome the challenge of abrupt faults in GPS measurements including pseudorange and pseudorange rate,then adjusts the GPS measurement noise by adaptive factor vector for high navigation solution.Then the field experiment is carried out on an urban road to test the availability of the RKF.Compared with the traditional KF,the horizon position errors decrease by over 30%,while the errors reduction on height position are approximately 50%with RFK,and the velocity errors are decreased by 17.5%.RFK can effectively reduce the navigation solution errors of tightly coupled MEMS-INS/GPS integrated navigation system in urban areas.
作者
和涛
张慧君
李孝辉
江南
王东宇
HE Tao;ZHANG Huijun;LI Xiaohui;JIANG Nan;WANG Dongyu(National Time Service Center,Chinese Academy of Sciences,Xi’an 710600,China;Key Laboratory of Precision Navigation and Timing Technology,National Time Service Center,Chinese Academy of Sciences,Xi′an 710600,China;University of Chinese Academy of Sciences,Beijing 100049,China;Kunming Shipborne Equipment Research and Test Center,China State Shipbuilding Corporation Limited,Kunming 650051,China)
出处
《中国惯性技术学报》
EI
CSCD
北大核心
2023年第2期179-188,共10页
Journal of Chinese Inertial Technology
基金
国防基础性科研院所稳定支持项目(110032019003)。
关键词
抗差滤波器
误差检测与分离
自适应滤波
紧耦合
城市环境
GPS
robust filter
error detection and isolation
adaptive filtering
tightly coupled
Urban environment
GPS