摘要
动态网络链路预测是目前复杂网络的热点研究方向,网络表示学习可以有效学习到节点的相似性,从而为链路预测提供基础.现有的动态网络表示学习方法大多先将动态网络进行离散窗口化,然后在静态网络快照图上建模,这样很难有效处理具有细粒度时间特性的动态网络.本文提出了一种可以学习动态网络中复杂的时间特性的链路预测模型,该模型使用连续时间事件序列表示动态网络,对网络中的连续时间信息和结构演化特征进行学习,并提出了基于时间注意力的信息传递机制来模拟网络中信息的扩散与聚合,最后将链路预测转化为分类问题.实验在4个真实动态网络数据集以及模拟网络上进行,并以ap和auc作为评价指标.真实网络实验结果证明该模型能够较好地学习网络演化的连续性,得到更有效的节点表示,从而提升了链路预测效果.模拟网络的实验结果表明链路预测的效果和网络模型相关,但本文模型仍可以获得较好的预测效果.
Dynamic network link prediction is a hot research problem in complex networks. Network representation learning can effectively learn the similarity of nodes and can be used for link prediction. Existing dynamic network representation learning methods mainly discrete window dynamic networks and then model them on static network snapshot graphs, which is difficult to effectively deal with dynamic networks with fine-grained temporal characteristics. In this paper, we propose a link prediction model that can learn complex temporal properties in dynamic networks. The model uses continuous time event sequences to represent dynamic networks,learns continuous temporal information and structural evolution features in the networks, and proposes a temporal attention-based information transfer mechanism to model the diffusion and aggregation of information in the networks. Finally, it transforms link prediction into a classification problem. The experiments are conducted on four real dynamic network datasets and simulated networks, using ap and auc as evaluation metrics. The experimental results of real networks demonstrate that the model can effectively learn the continuity of network evolution and obtain an effective node representation, thus improving the link prediction effect. The experimental results of the simulated network show that the effect of link prediction is related to the network model, but the model in this paper can still obtain better prediction results.
作者
韩忠明
王宇航
陈福宇
杨伟杰
毛雅俊
Zhongming HAN;Yuhang WANG;Fuyu CHEN;Weijie YANG;Yajun MAO(School of International Economics and Management,Beijing Technology and Business University,Beijing 100048,China;School of Computer Science and Engineering,Beijing Technology and Business University,Beijing 100048,China;School of Artificial Intelligence,Beijing Technology and Business University,Beijing 100048,China;Beijing Key Laboratory of Food Safety Big Data Technology,Beijing Technology and Business University,Beijing 100048,China)
出处
《中国科学:信息科学》
CSCD
北大核心
2023年第2期234-249,共16页
Scientia Sinica(Informationis)
基金
国家重点研发计划(批准号:2019YFC0507800)
国家自然科学基金(批准号:72171004)
教育部人文社会科学研究青年基金(批准号:21YJCZH186)资助项目。
关键词
链路预测
连续时间
动态网络
表示学习
复杂网络
link prediction
continuous time
dynamic network
representation learning
complex network