摘要
随着车载GPS定位设备的普及,产生了大量的车辆轨迹数据和位置信息,各种轨迹挖掘技术也应运而生.然而,现有的轨迹挖掘技术较少考虑用户的隐私泄露问题,因此,本文提出了一种融合隐私保护的车辆轨迹数据停留点挖掘方法.在该算法中,首先通过密度聚类筛选出轨迹停留点,其次结合差分隐私技术对停留点进行隐私保护.通过实验验证,该方法不仅能有效识别出停留点的位置,还能保护其隐私不被泄露.
With the popularization of on-board GPS positioning equipment,a large amount of vehicle trajectory data and location information have been generated,and various trajectory mining technologies have emerged as the times require.However,the existing trajectory mining technologies rarely consider the leakage of users’privacy.Therefore,this study proposes a method of stay point mining from vehicle trajectory data integrating privacy protection.In this algorithm,the stay points in the trajectory are screened out by density clustering,and privacy protection of the stay points is then conducted with the differential privacy technology.The experimental verification shows that the proposed method can not only effectively identify the location of the stay points but also protect their privacy from being leaked.
作者
徐燕
樊娜
段宗涛
郝家欢
梁星
XU Yan;FAN Na;DUAN Zong-Tao;HAO Jia-Huan;LIANG Xing(School of Information Engineering,Chang’an University,Xi’an 710064,China)
出处
《计算机系统应用》
2023年第2期329-338,共10页
Computer Systems & Applications
基金
陕西省重点研发计划(2022GY-039)。
关键词
数据挖掘
时空轨迹
停留点
隐私保护
差分隐私
data mining
spatiotemporal trajectory
stay point
privacy protection
differential privacy