期刊文献+

基于DenseNet和注意力机制的静爆场破片识别方法研究 被引量:1

Research on fragment identification of a static explosion field based on DenseNet and attention mechanism
下载PDF
导出
摘要 针对静爆场破片着靶图像识别中对小破片的识别较为困难的问题,采用改进的SSD目标检测算法,将SSD网络模型中的骨干网络修改为DenseNet,减少网络参数,降低输入图像特征信息的消耗,最大程度地保留目标物体的细节信息。另外引入注意力机制模型,结合通道注意力机制和空间注意力机制,获取特征层通道和特征点的权值,充分提取小破片的特征信息。实验结果表明,提出的方法对小破片的检测准确率达到89.82%,与传统的SSD方法相比误检率提高了3.6%,漏检率提高了6%,为分析破片的飞散特性和毁伤效果提供了保障。 In view of the difficulty in the identification of small fragments in fragmenting target image recognition in a static blasting field, this paper uses an improved SSD target detection algorithm to modify the backbone network in the SSD model to DenseNet, which reduces the network parameters, reduces the consumption of the input image feature information, and preserves the details of the target objects to the greatest extent. In addition, the attention mechanism model is introduced, which combines channel attention mechanism and spatial attention mechanism to obtain the weights of the feature layer channels and feature points so as to fully extract the feature information of small fragments. The experimental results show that detection accuracy of the proposed method for small fragments reaches 89.82%. Compared with the traditional SSD method, the false detection rate increases by 3.6% and the missed detection rate increases by 6%, which provides a guarantee for analyzing the flying characteristics and damage effect of the fragments.
作者 魏琦 何子清 王亚林 王军 WEI Qi;HE Ziqing;WANG Yalin;WANG Jun(Suzhou University of Science and Technology,Suzhou 215009,China;Key Laboratory of Near-Surface Detection Technology,Wuxi 214035,China;China Baicheng Weapon Test Center,Baicheng 137001,China)
出处 《兵器装备工程学报》 CAS CSCD 北大核心 2023年第2期259-265,共7页 Journal of Ordnance Equipment Engineering
基金 “十四五”江苏省重点学科项目(2021135) 近地面探测技术重点实验室基金项目(TCGZ2018A005)。
关键词 静爆场破片 SSD DenseNet网络 注意力机制 static explosive field fragment SSD DenseNet attention mechanism
  • 相关文献

参考文献6

二级参考文献57

共引文献39

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部