期刊文献+

广义观测相对论:时空在爱因斯坦广义相对论中为什么弯曲?(下篇)——GOR理论与科学预言 被引量:1

General Observational Relativity:Why is Spacetime Curved in Einstein’s General Relativity?(PartⅡ)——The Establishment of GOR Theory
下载PDF
导出
摘要 “观测相对论”(observational relativity,OR),基于不同于爱因斯坦狭义相对论之逻辑前提,却导出了形式上与洛伦兹变换完全相同的“广义洛伦兹变换”,概括统一了伽利略变换和洛伦兹变换,揭示了物理学不同观测体系之间以及不同理论体系之间的对应关系,赋予玻尔对应原理更为普遍的意义.本文基于OR理论和玻尔对应原理,建立“广义对应原理”;进而,基于“广义对应原理”,将OR理论由惯性时空推广至引力时空,将爱因斯坦广义相对论由光学观测体系推广至一般观测体系,最终,建立起与爱因斯坦广义相对论同构一致的“广义观测相对论”(general observational relativity,GOR).GOR理论为我们带来了有关爱因斯坦广义相对论的全新认识:时空并非真地弯曲——客观真实的时空是不会弯曲的;与一切观测上的相对论性现象一样,所谓“时空弯曲”,并非客观的物理现实,而是观测局域性所致之观测效应.GOR理论概括统一了牛顿万有引力论和爱因斯坦广义相对论两大理论体系.GOR理论中,牛顿万有引力论和爱因斯坦广义相对论皆霍金言下之局部理论(partial theory),分属不同观测体系:牛顿万有引力论乃理想观测体系的产物,而爱因斯坦广义相对论则是光学观测体系的产物.根据GOR理论,不同观测体系存在不同程度的观测局域性,其观测上的引力时空呈现不同程度的弯曲状态:光速是有限的(c<∞),因而,光学观测体系存在观测局域性,这是爱因斯坦广义相对论之引力时空看起来有些弯曲的原因;理想观测体系无观测局域性存在,因而,牛顿万有引力论之引力时空代表客观真实的引力时空.广义对应原理意义下,GOR理论与牛顿万有引力论和爱因斯坦广义相对论具有严格的对应关系:光学观测体系情形,GOR场方程严格地约化为爱因斯坦场方程,GOR运动方程严格地约化为爱因斯坦广义相对论之运动方程;理想观测体系情形,GOR场方程严格地约化为牛顿万有引力定律之泊松方程形式,GOR运动方程严格地约化为牛顿第二定律之运动方程形式.这种严格的对应关系表明,GOR理论,既与爱因斯坦广义相对论逻辑上一致,又与牛顿万有引力论逻辑上一致;同时,这种严格的对应关系印证了GOR理论逻辑上的自洽性和理论上的正确性.GOR理论意味着,人类及其物理学需要重新认识牛顿万有引力论和爱因斯坦广义相对论,重新认识引力相互作用及其相对论性现象,重新认识爱因斯坦基于广义相对论所做出的科学预言,重新认识客观世界,重塑人类的自然观. The theory of observational relativity(OR),based on the logical prerequisites different from that of Einstein’s theory of special relativity,has derived the general Lorentz transformation(GLT)that is exactly the same as the Lorentz transformation in form.The GLT has generalized and unified the Lorentz transformation and the Galilean transformation,shed light on the corresponding relationship between different observation systems and between different theoretical systems in physics,and endowed Bohr’s correspondence principle with more universal significance.On the basis of the theory of OR and Bohr’s correspondence principle,this paper develops the principle of general correspondence(PGC).Under the principle of PGC,the theory of OR is extended from inertial spacetime to gravitational spacetime,Einstein’s theory of general relativity is extended from the optical observation system to the general observation system,and finally,the theory of general observational relativity(GOR)has been established that is isomorphically consistent with Einstein’s theory of general relativity.The theory of GOR provides us with a new insight into Einstein’s general relativity:the objective and real spacetime is never curved;like all relativistic phenomena in observation,the so-called spacetime curvature is not objectively physical reality,but an observational effect resulting from observational locality.The theory of GOR has generalized and unified the two great theoretical systems,Newton’s theory of universal gravitation and Einstein’s theory of general relativity.In the theoretical system of GOR,Newton’s theory of universal gravitation and Einstein’s theory of general relativity are both partial theories that Hawking termed in his book“A Brief History of Time”,and belong to different observation systems:the Newton’s theory is the product of the idealized observation system;while Einstein’s theory is the product of the optical observation system.According to the theory of GOR,different observation systems have different degrees of observational locality,so that their observed gravitational spacetimes present different degrees of curvature.The speed of light is limited(c<∞)and therefore the optical observation system has observational locality,which is why Einstein’s gravitational spacetime looks somewhat curved;the idealized observation system has no observational locality and therefore Newton’s gravitational spacetime represents the objective and real gravitational spacetime.In the sense of the PGC,the theory of GOR has strict corresponding relationships with both Newton’s theory of universal gravitation and Einstein’s theory of general relativity:in the case of optical observation,the field equation of GOR is strictly reduced to Einstein’s field equation,and the geodesic equation of GOR is strictly reduced to Einstein’s geodesic equation;in the case of idealized observation,the field equation of GOR is strictly reduced to Newton’s field equation(i.e.,Newton’s law of universal gravitation in the form of Poisson’s equation),and the geodesic equation of GOR is strictly reduced to Newton’s geodesic equation in the form of Newton’s second law.Such strict corresponding relationships show that the theory of GOR is logically consistent with both Einstein’s theory of general relativity and Newton’s theory of universal gravitation.Meanwhile,such strict corresponding relationships corroborate the logical self-consistency and theoretical validity of GOR.The theory of GOR signifies that human beings and the physics they create have to reexamine Newton’s theory of universal gravitation and Einstein’s theory of general relativity,to reexamine Einstein’s scientific predictions based on his general relativity,and to reshape human view of nature.
作者 阮晓钢 RUAN Xiaogang(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China)
出处 《北京工业大学学报》 CAS CSCD 北大核心 2023年第3期245-324,共80页 Journal of Beijing University of Technology
关键词 对应原理 相对性原理 狭义相对论 广义相对论 观测相对论 局域性原理 correspondence principle relativity principle special relativity general relativity observational relativity principle of locality
  • 相关文献

二级参考文献45

  • 1王永久.经典黑洞与量子黑洞[M].北京:科学出版社,2008.
  • 2王允然,鲁菲尼R.相对论天体物理的基本概念[M].上海:上海科学技术出版社,1981.
  • 3赵峥,刘文彪.广义相对论基础[M].北京:清华大学出版社,2010.
  • 4刘辽,赵峥.广义相对论[M].2版.北京:高等教育出版社.2008.
  • 5Wald R M. General Relativity [ M ]. Chicago and Lon- don: The University of Chicago Press, 1984.
  • 6Hawking S W, Ellis G F R. The large scale structure of space -time [ M ]. Cambridge: Cambridge University Press, 1973.
  • 7Misner C W, Thorne K S, Wheeler J A. Gravitation [ M]. San Francisco: Freeman W H Company, 1973.
  • 8Chandrasekhar S. The mathematical Theory of Black Holes [ M ]. New York: Oxford University Press, 1983.
  • 9王永久.经典宇宙与量子宇宙[M].北京:科学出版社,2010.
  • 10Birrell N D, Davies P C W. Quantum Fields in Curved Space [ M ]. Cambridge: Cambridge University Press, 1982.

共引文献16

同被引文献32

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部