期刊文献+

基于组合模型的新能源汽车销量预测方法

New Energy Vehicle Sales Forecasting Method Based on Combination Model
下载PDF
导出
摘要 在汽车行业,企业需要对汽车的销量进行准确预测,以制定科学合理的生产计划。为此,以新能源汽车为例,利用历史销量数据构建基于传统时间序列理论的ARIMA预测模型和基于深度学习的LSTM预测模型,并利用Stacking方法对以上两种模型进行集成。实验结果表明,组合模型的平均绝对百分比误差为3.65%,相较于ARIMA(0,1,1)模型和LSTM模型分别降低2.57%和1.86%。该方法可为新能源汽车生产计划提供数据参考,并适用于其他类型汽车。 In view of the problem that enterprises need to accurately predict the sales volume of vehicles in order to formulate a scientific and reasonable production plan in the automotive industry, taking new energy vehicles as an example, using the historical sales volume data to build a ARIMA prediction model based on traditional time series theory and an LSTM prediction model based on deep learning, and uses the Stacking method to integrate the above two models. The experimental results show that the average absolute percentage error of the combined model is 3.65%, reduced by 2.57% and 1.86% respectively,compared with ARIMA(0,1,1) model and LSTM model. This method can provide data reference for the production plan of new energy vehicles, and is applicable to other type of car.
作者 王欢 李民 焦宇 余开朝 WANG Huan;LI Min;JIAO Yu;YU Kai-chao(School of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650500,China)
出处 《软件导刊》 2023年第2期136-141,共6页 Software Guide
基金 云南省智能化自动化产业发展研究项目(YNDR2017G1C06)。
关键词 新能源汽车 销量预测 组合预测模型 new energy vehicles sales forecast combined forecasting model
  • 相关文献

参考文献9

二级参考文献80

  • 1刘金全,邵欣炜.流动性约束与消费行为关系的实证研究[J].管理科学学报,2004,7(4):90-94. 被引量:13
  • 2尹爱军,秦树人,周传德.基于支持矢量机的从明暗恢复形状方法[J].机械工程学报,2006,42(7):186-191. 被引量:7
  • 3王琦,郑静,吴清香,卢祖洵.灰色GM(1,1)预测模型在门诊量预测中的应用[J].中国医院管理,2007,27(2):26-27. 被引量:17
  • 4李正欣,赵林度.基于贝叶斯框架下LS-SVM的时间序列预测模型[J].系统工程理论与实践,2007,27(5):142-146. 被引量:11
  • 5BOX G E P, JENKINS G Forecasting and control[M]. New Jersey: Prentice- Hall, M. Time series analysis: 3rd ed. Englewood Cliffs, Inc, 1994.
  • 6ENGLE R F. Combining competing forecasts of inflation using a bivariate ARCH model[J]. Journal of Economic Dynamics and Control, 1984, 8(2): 151-165.
  • 7TANG Z, ALMEDIA C, FISHWICK P A. Time series forecasting using neural networks vs Box-Jenkins methodology[J]. Simulation, 1991, 57(5): 303-310.
  • 8THISSENA U, BRAKELA R V, WEIJERB A P, et al. Using support vector machines for time series prediction[J]. Chemometrics and Intelligent Laboratory Systems, 2003, 69(1-2): 35-49.
  • 9VAPNIK V. The nature of statistical learning[M]. New York: Springer, 1995.
  • 10CAO J R, CAI A N. A robust shot transition detection method based on support vector machine in compressed domain[J]. Pattern Recognition Letters, 2007, 28(12): 1 534-1 540.

共引文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部