摘要
应用共轭梯度方法和线性投影算子,给出迭代算法求解了线性矩阵方程AX=B在任意线性子空间上的最小二乘解问题.在不考虑舍入误差的情况下,可以证明,所给迭代算法经过有限步迭代可得到矩阵方程AX=B的最小二乘解、极小范数最小二乘解及其最佳逼近.文中的数值例子证实了该算法的有效性.
Applying the conjugate gradient method and linear projection operator,an iterative algorithm is presented to solve the least squares problem of linear matrix equation AX=B over any linear subspace.It is proved that the least squares solution,the minimum-norm least squares solution and the optimal approximation of the matrix equation AX=B can be obtained in finite iteration steps by the method without considering rounding errors.The numerical examples verify the efficiency of the algorithm.
作者
周海林
Zhou Hailin(Taizhou Institute of Sci.&Tech.,NJUST.,Taizhou 225300,China)
出处
《计算数学》
CSCD
北大核心
2023年第1期93-108,共16页
Mathematica Numerica Sinica
基金
江苏高校“青蓝工程”(2020)资助项目。
关键词
线性子空间
共轭梯度
投影算子
最小二乘解
最佳逼近
linear subspace
conjugate gradient
projection operator
least squares solution
optimal approximation