期刊文献+

基于RCNN-ABiLSTM的机械设备剩余寿命预测方法 被引量:2

Prediction method for mechanical equipment based on RCNN-ABiLSTM
下载PDF
导出
摘要 针对机械设备的关键退化信息易淹没在非线性、多维度、长时间、大规模监测数据中的问题,提出了一种基于残差卷积神经网络和注意力双向长短时记忆网络融合(residual convolutional neural network-attentional bidirectional long short-term memory network,RCNN-ABiLSTM)的机械设备剩余寿命预测方法。首先通过训练RCNN提取监测数据的深度空间特征;然后通过引入注意力机制,优化双向长短时记忆网络提取时间相关特征的权重参数,加强关键退化信息对剩余寿命预测的表达;最后通过航空发动机数据集验证了方法的有效性。分析结果表明,对于运行条件复杂和故障模式多变的多维监测数据,所提方法能够准确寻找退化时间点,有效提高长时间运行设备的剩余寿命预测准确度。 Aiming at the problem that the key degradation information of mechanical equipment is easy to be submerged in nonlinear,multi-dimensional,long-term and large-scale monitoring data,a method for predicting the remaining useful life of mechanical equipment based on residual convolutional neural network-attentional bidirectional long short-term memory network(RCNN-ABiLSTM)is proposed.Firstly,the RCNN is trained for deep spatial feature extraction of the monitoring data.Then,by introducing the attention mechanism,the weight parameters of the time-related features extracted by BiLSTM are optimized.And the expression of the key degradation information on the remaining life prediction is strengthened.Finally,the effectiveness of the proposed method is verified by the aircraft engine.The analysis results show that the proposed method can accurately find the degradation time point for multi-dimensional monitoring data with complex operating conditions and variable failure modes.The remaining useful life prediction accuracy of long-running equipment is effectively improved.
作者 闫啸家 梁伟阁 张钢 佘博 田福庆 YAN Xiaojia;LIANG Weige;ZHANG Gang;SHE Bo;TIAN Fuqing(College of Weaponry Engineering,Naval University of Engineering,Wuhan 430033,China;College of Missiles and Naval Guns,Dalian Naval Academy,Dalian 116016,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2023年第3期931-940,共10页 Systems Engineering and Electronics
基金 国家自然科学基金(61640308) 湖北省自然科学基金(2019CFB362)资助课题。
关键词 残差卷积神经网络 注意力机制 融合模型 剩余寿命预测 航空发动机 residual convolutional neural network(RCNN) attention mechanism fusion model remaining useful life(RUL)prediction aircraft engine
  • 相关文献

参考文献10

二级参考文献79

  • 1王玲玲,茆诗松,王静,杨士特,徐健.电动机平均寿命的零失效验收方案[J].应用概率统计,1995,11(4):439-442. 被引量:5
  • 2周源泉,翁朝曦,叶喜涛.论加速系数与失效机理不变的条件(Ⅱ)──失效为计数过程的情况[J].系统工程与电子技术,1996,18(3):68-75. 被引量:11
  • 3周源泉,翁朝曦,叶喜涛.论加速系数与失效机理不变的条件(Ⅰ)─—寿命型随机变量的情况[J].系统工程与电子技术,1996,18(1):55-67. 被引量:60
  • 4Dewar M, Kadirkamanathan V. A canonical space-time state space model: state and parameter estimation [ J ]. IEEE Transactions on Signal Processing, 2007, 55 (10): 4862-4869.
  • 5Nelson W. Analysis of performance degradation data from accelerated tests [ J ]. IEEE Transactions on Reliability, 1981, 30:149 - 155.
  • 6Chen Z H, Zheng S R. Lifetime distribution based degradation analysis [ J ]. IEEE Transaction on Reliability, 2005, 54 (1) :3 -10.
  • 7Orchard M E. A Particle filtering-based framework for on-line fault diagnosis and failure prognosis [ D ]. Georgia: Georgia Institute of Technology, 2006.
  • 8Orchard M E, Tang L, Goebel K, et al. A novel RSPF approach to prediction of high-risk, low-probability failure event[C]. Annual Conference of the Prognostics and Health Management Society, 2009 : 1 - 8.
  • 9Ribeiro C, Webber N. Valuing path dependent options in the variance-gamma model by monte carlo with a gamma bridge [ J ]. Financial Econometrics Research Centre, Working Papers Series ,2002 : 1 - 21.
  • 10Romano P A. A model based framework for fault diagnosis and prognosis of dynamical systems with an application to helicopter transmissions [ D]. Georgia: Georgia Institute of Technology,2lXl7.

共引文献476

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部