摘要
本文针对Yolo v2目标检测卷积神经网络实现了基于Xilinx Virtex Ultrasale+VCU118的硬件加速,整体采用MCU+FPGA的异构计算架构,MCU采用ArmCortex-M3软核IP布局布线到FPGA开发板中。软件上完成了MCU读取大位宽RAM数据以及中断控制系统的设计,硬件上完成了Yolo v2网络前向传播模型中的卷积、ReLU非线性激活、最大池化等核心模块的设计。PE(Processing Engine)阵列借鉴了eyeriss阵列架构中的行固定流思想,通过精心设计阵列输入数据的格式,将多维卷积拆分成一维卷积,实现多输入特征图、多通道、多卷积核的通用性卷积计算,且利用Chisel3语言实现了一种高度参数化的卷积计算电路生成器,具有计算位宽可调、PE阵列规模可调、PE单元内部存储可调的特点。
出处
《电子技术与软件工程》
2022年第20期170-177,共8页
ELECTRONIC TECHNOLOGY & SOFTWARE ENGINEERING
基金
基于中国科学院上海微系统与信息技术研究所委托深圳市唯特视科技有限公司开发项目的研究成果,项目名称为红外黑白图像彩色还原技术,项目编号为6142804190408。