期刊文献+

基于SOFC-GT-ST的双塔解吸CO_(2)捕集工艺模拟研究

Simulation Study on CO_(2) Capture Process by Double Tower Desorption based on SOFC-GT-ST
原文传递
导出
摘要 设计并验证了一种新型固体氧化物燃料电池、燃气轮机和蒸汽轮机(SOFC-GT-ST)联合循环动力系统,采用了阳极排气和后燃烧室排气两个再循环回路,研究了气体再循环对系统性能的影响,并对系统发电效率进行优化;针对烟气处理工段设计了闪蒸塔和再生塔结合的双塔解吸CO_(2)捕集工艺,并改进了MDEA溶液补充水的方式,优化了多处余热利用,使用Aspen Plus软件建立了系统模型,研究了贫液温度、烟气温度、贫液流量、吸收塔压力和解吸塔压力等对CO_(2)捕集率的影响。结果表明:阳极排气再循环比最优值为0.28,燃烧室排气再循环比最优值为0.36,CO_(2)的捕集率可达90.82%,碳捕集能耗为3.78 GJ/t。 A new solid oxide fuel cell, gas turbine and steam turbine(SOFC-GT-ST) combined cycle power system was designed and verified. Two recirculation circuits, including anode exhaust and rear combustion chamber exhaust, were adopted to study the influence of gas recirculation on system performance and optimize the electrical efficiency of the system;aiming at the flue gas treatment section, a double tower desorption CO_(2)capture process combining flash tower and regeneration tower was designed, the way of making up water for MDEA solution was improved, and the utilization of multiple waste heat was optimized. The system model was established by using Aspen Plus software, and the effects of lean liquid temperature, flue gas temperature, lean liquid flow, absorption tower pressure and desorption tower pressure on CO_(2)capture rate were studied. The results show that the optimal value of anode exhaust gas recirculation ratio is 0.28,the optimal value of combustion chamber exhaust gas recirculation ratio is 0.36,the CO_(2)capture rate can reach 90.82%,and the carbon capture energy consumption is 3.78 GJ/t.
作者 田松峰 张都 李正宽 包忠祥 TIAN Song-feng;ZHANG Du;LI Zheng-kuan;BAO Zhong-xiang(Department of Power Engineering,North China Electric Power University,Baoding,China,071003)
出处 《热能动力工程》 CAS CSCD 北大核心 2023年第1期71-81,共11页 Journal of Engineering for Thermal Energy and Power
关键词 MDEA循环 碳捕集 固体氧化物燃料电池(SOFC) 热力学分析 MDEA cycle carbon capture solid oxide fuel cell(SOFC) thermodynamic analysis
  • 相关文献

参考文献2

二级参考文献30

  • 1陈启梅,翁一武,翁史烈,朱新坚.燃料电池-燃气轮机混合发电系统性能研究[J].中国电机工程学报,2006,26(4):31-35. 被引量:29
  • 2杨勇平.分布式能量系统[M].北京:化学工业出版社.2011.
  • 3Wang J, Yan Z, MaS,et al. Thermodynamic analysis ofan integrated power generation system driven by solidoxide fuel cell[J]. International Journal of HydrogenEnergy, 2012,37(3): 2535-2545.
  • 4Calise F,d’Accadia M D,Vanoli L,et al. Fullloadsynthesis/desigin optimization of a hybrid SOFC-GTpower plant[J]. Energy,2007,32(4): 446-458.
  • 5Sanaye S,Katebi A. 4E analysis and multi objectiveoptimization of a micro gas turbine and solid oxide fuelcell hybrid combined heat and power system[J]. Journal ofPower Sources,2014 (247): 294-306.
  • 6Calise F,Dentice d’Accadia M,Palombo A,etal. Simulation and exergy analysis of a hybrid solid oxidefuel cell (SOFC)-gas turbine system[J]. Energy, 2006,31(15): 3278-3299.
  • 7Haseli Y, Dincer I, Naterer G F. Thermodynamic analysisof a combined gas turbine power system with a solid oxidefuel cell through exergy[J]. Thermochimica Acta, 2008,480(1): 1-9.
  • 8Bavarsad P G. Energy and exergy analysis of internalreforming solid oxide fuel cell-gas turbine hybrid system[J]. International Journal of Hydrogen Energy, 2007,32(17): 4591-4599.
  • 9Pierobon L,Rokni M, Larsen U,et al. Thermodynamicanalysis of an integrated gasification solid oxide fuel cellplant combined with an organic Rankine cycle[J]. Renewable Energy. 2013(60): 226-234.
  • 10Yan Z,Zhao P, Wang J, et al. Thermodynamic analysisof an SOFC-GT-ORC integrated power system withliquefied natural gas as heat sink[J]. International Journalof Hydrogen Energy, 2013, 38(8): 3352-3363.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部