期刊文献+

耦合有机朗肯循环的液化空气储能系统性能研究 被引量:2

Study on Performance of LAES Coupled with Organic Rankine Cycle
原文传递
导出
摘要 为解决液化空气储能系统(LAES)压缩热利用不完全的问题,构建了耦合有机朗肯循环的液化空气储能系统(ORC-LAES)。对ORC-LAES系统建立热力学性能计算模型,在设计参数下分析压缩机出口压力、膨胀机入口压力、加压水初温、加压水流量比及膨胀机级数对ORC-LAES系统性能的影响。结果表明,当压缩机出口压力由6 MPa上升到16 MPa、加压水初温从293 K上升到323 K时,系统的循环效率、火用效率和液化率均下降;当膨胀机入口压力由8 MPa上升到18 MPa时,系统循环效率和火用效率均增加;当加压水流量比由0.51上升到0.96时,系统循环效率和火用效率先增加再减少,流量比为0.71时,系统的循环效率和火用效率达到最大;在压缩热利用上耦合有机朗肯循环要优于增加膨胀机级数;ORC-LAES系统与LAES系统相比,循环效率提高4.8%,火用效率提升5.1%。 To solve the problem of incomplete utilization of compressed heat in liquefied air energy storage system(LAES),a LAES system coupled with organic Rankine cycle(ORC-LAES) was constructed.Thermodynamic performance calculation model for ORC-LAES system was established, and the influence of compressor outlet pressure, expander inlet pressure, initial temperature of pressurized water, pressurized water flow ratio and expander stage number on ORC-LAES system performance was analyzed under design parameters.The results show that when the outlet pressure of the compressor rises from 6 MPa to 16 MPa and the initial temperature of pressurized water rises from 293 K to 323 K,the cycle efficiency, exergetic efficiency and liquefaction rate of the system decrease;when the inlet pressure of the expander rises from 8 MPa to 18 MPa, the system cycle efficiency and exergetic efficiency increase;when the flow ratio of pressurized water increases from 0.51 to 0.96,the cycle efficiency and exergetic efficiency of the system first increase and then decrease, and when the flow ratio is 0.71,the cycle efficiency and exergetic efficiency of the system reach the maximum value;coupling ORC is better than increasing the number of expander stages in the utilization of compression heat;compared with the LAES system, the ORC-LAES system has a 4.8% increase in cycle efficiency and a 5.1% increase in exergetic efficiency.
作者 梁子阳 刘春涛 董益华 方立军 LIANG Zi-yang;LIU Chun-tao;DONG Yi-hua;FANG Li-jun(Department of Power Engineering,North China University of Electric Power,Baoding,China,071003;Zhejiang Energy Technology Research Institute Co.,Ltd.,Hangzhou,China,311121)
出处 《热能动力工程》 CAS CSCD 北大核心 2023年第1期173-180,共8页 Journal of Engineering for Thermal Energy and Power
基金 中央高校基本科研业务费专项资金资助(2018MS105)。
关键词 液化空气储能 有机朗肯循环 循环效率 液化率 火用效率 liquefied air energy storage organic Rankine cycle cycle efficiency liquefaction rate exergetic efficiency
  • 相关文献

参考文献11

二级参考文献89

  • 1秦睿,董开松,刘海燕,杨萍.大容量储能电站在输电网送端应用分析评估[J].电网与清洁能源,2015,31(3):52-57. 被引量:1
  • 2齐保良,孙玉龙.小型风力发电混合储能及能量管理系统[J].电网与清洁能源,2015,31(3):87-92. 被引量:7
  • 3程伟良,黄其励.热经济学的结构理论及其应用[J].哈尔滨工业大学学报,2005,37(10):1388-1390. 被引量:11
  • 4陈璟华,杨宜民,张伯泉.基于多Agent的风力/太阳能互补发电场能量管理系统[J].电力自动化设备,2007,27(8):81-85. 被引量:5
  • 5Global Wind Energy Council. Global Wind 2009 Report [EB/OL]. [2010-4-28]. http://www.gwec.net/index.php?id =167.
  • 6Korpaas M, Holen A T, Hildrum R. Operation and Sizing of Energy Storage for Wind Power Plants in a Market System [J]. Electrical Power and Energy Systems, 2003, 25:599-606.
  • 7Greenblatt J B, Succax S, Denkenberger D C, et al. Baseload Wind Energy: Modelling the Competition Between Gas Turbines and Compressed Air Energy Storage for Supplemental Generation [J]. Energy Policy, 2007, 35: 1474-1492.
  • 8Ridge Energy Storage & Grid Services. The Economic Impact of CAES on Wind in TX, OK, and NM, Final Report [R]. 2005.
  • 9CHEN Haisheng, DING Yulong, Toby P, et al. A Method of Storing Energy and a Cryogenic Energy Storage System, WO/2007/096656 [P/OL]. 2007-08-30.
  • 10Zhang Shengjun,Wang Huaixin,Guo Tao.Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation[J].Applied Energy.2011(8)

共引文献109

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部