期刊文献+

基于灰狼优化算法的微分方程数值解法 被引量:1

Numerical solution method of differential equations based on grey wolf optimization algorithm
下载PDF
导出
摘要 利用灰狼优化(GWO)算法全局优化的优点,提出了基于多项式函数逼近和GWO算法的微分方程数值解法。首先,分别采用最小二乘多项式、勒让德多项式、切比雪夫多项式和伯恩斯坦多项式基函数构造微分方程解的近似函数;再结合加权残差法的思想,令近似函数满足微分方程和定解条件且残差最小,使微分方程转换成以近似函数待定系数为变量的带约束优化问题;然后,利用GWO算法求解该优化问题,进而可得到微分方程多项式近似解。通过对线性和非线性微分方程进行数值模拟,结果表明:与其他几种多项式逼近方法相比,伯恩斯坦多项式逼近所得的数值解与精确解逼近程度最高,验证了所提算法用于求解高阶线性和非线性微分方程的初边值问题的可行性与准确性。研究结果拓宽了GWO算法的应用范围,为求解微分方程初边值问题提供了新方法。 Taking advantage of the global optimization of Grey Wolf Optimizer(GWO),a numerical method was proposed for solving differential equations based on the polynomial function approximation and GWO.Firstly,the Least squares polynomial,Legendre polynomial,Chebyshev polynomial and Bernstein polynomial basis functions were used to develop the approximate functions of the differential equation solutions.Secondly,the approximate function satisfied the differential equation and definite solution conditions by the idea of the weighted residual method,and the differential equation was transformed into the constrained optimization problem by minimizing the residual error.Based on the numerical simulation of linear and nonlinear differential equations,the results show that,the Bernstein polynomial method has the highest approximation degree than the other polynomial approximation methods.The feasibility and accuracy of the proposed algorithm were verified for solving the initial-boundary value problems of high-order linear and nonlinear differential equations.The application range of GWO was broadened and a new method for solving the initial-boundary value problem of differential equation was developed.
作者 苏李君 张亚玲 徐小平 郭媛 胡钢 王兴 SU Lijun;ZHANG Yaling;XU Xiaoping;GUO Yuan;HU Gang;WANG Xing(School of Sciences,Xi’an University of Technology,Xi’an Shaanxi 710054,China)
出处 《计算机应用》 CSCD 北大核心 2022年第S02期140-147,共8页 journal of Computer Applications
基金 国家自然科学基金资助项目(51979220)。
关键词 灰狼优化算法 微分方程 多项式函数逼近 数值解 Grey Wolf Optimizer(GWO)algorithm differential equation polynomial function approximation numerical solution
  • 相关文献

参考文献11

二级参考文献39

  • 1何长英.基于遗传算法的微分方程模型参数优化[J].电脑知识与技术(技术论坛),2005(6):78-80. 被引量:5
  • 2卢旋珠,刘发旺.时间分数阶扩散-反应方程[J].高等学校计算数学学报,2005,27(3):267-273. 被引量:8
  • 3于强,刘发旺.时间分数阶反应-扩散方程的隐式差分近似[J].厦门大学学报(自然科学版),2006,45(3):315-319. 被引量:20
  • 4王小平,曹立明.遗传算法理论应用与软件实现[M].西安:西安交通大学出版社,2004:231-232.
  • 5Lionel M.Laszlo N K.Christian F,Ivan M.Multi-criteria optimization of a single cell oil production[J].European Journal of Operational Research.2004,153 (2):360-369.
  • 6JOHNSON R S. A nonlinear equation incorporating damping and dispersion[J]. Fluid Mech, 1970, 42: 49-60.
  • 7BONA J L, SCHONBECK M E, Travelling solutions to the Korteweg-de Vries-Burgers equation [J].ProcRsoc Edinburgh, 1985, 101:207-226.
  • 8JEFFREY A, XU S. Exact solution to the Kortewg-de Vries-Burgers equation[J]. Wave Motion, 1989, 11:559- 564.
  • 9JEFFREY A, MOHAMAD M N B. Exact solution to the Kortewg de Vries-Burgers equation[J]. Wave Motion, 1991, 14:369-375.
  • 10DEMIRAY H. A note on the exact travelling wave solution to the Kortewg-de Vries-Burgers equation [J]. Wave Motion, 2003, 38: 367-369.

共引文献23

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部