期刊文献+

The first 2D organic-inorganic hybrid relaxor-ferroelectric single crystal

原文传递
导出
摘要 Inorganic relaxor ferroelectric solid solution single crystals are spurring new generations of high performance electromechanical devices,including transducers,sensors,and actuators,due to their ultrahigh electric field induced strain,large piezoelectric constant,high electromechanical coupling factor and low dielectric loss.However,relaxor ferroelectric single crystals found in organic-inorganic hybrid perovskites are very limited,but achieving these superior properties in them will be of great significance in the design of modern functional materials.Fortunately,here the first two-dimensional(2D)organic-inorganic hybrid relaxor ferroelectric single crystal,[Br(CH_(2))_(3)NH_(3)]_(2)PbBr_(4)(BPA_(2)-PbBr_(4),BPA=3-bromopropylamine),achieves some of superior properties.Interestingly,BPA_(2)-PbBr_(4)reveals a successive relaxor ferroelectric-ferroelectric-paraelectric phase transitions accompanying by a large degree of relaxationΔT_(relax)=61 K and ultralow energy loss(tanδ<0.001).Meanwhile,it exhibits a superior second harmonic generation(SHG)effect with maximum value accounts for 95%of the standard KDP due to great deformation of structure(3.2302×10^(-4)).In addition,temperature dependent luminescence spectra(80-415 K)exhibit fluorescence and phosphorescence overlapping emission originated from inorganic and organic components with the nanosecond-scale short lifetime and the millisecond-scale long lifetime,respectively,and the color of the emitted light is continuously adjustable,which is the first to achieve luminescence and relaxor ferroelectricity compatibility.
出处 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第2期466-474,共9页 中国科学(化学英文版)
基金 supported by the National Natural Science Foundation of China(22001102,21788102) the Jiangxi Provincial Natural Science Foundation(20202BAB213002) the Education Department of Jiangxi Province(GJJ190474) the Fundamental Research Funds for the Central Universities(JXUST,205200100116) the Program for Excellent Young Talents(JXUST,JXUSTQJYX2020018)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部