摘要
为了解决车辆目标检测中准确率低的问题,提出了一种基于改进YOLOv5算法的车辆目标检测.改进后的YOLOv5算法主要是在原来的基础上通过K-means聚类的方法对数据集中的目标边框进行重新聚类、并将CIoU损失函数和DIoU_nms应用于YOLOv5算法来提高目标识别效果.改进后的YOLOv5算法,目标检测mAP达到了85.8%,比改进前的YOLOv5算法提升了1.3%.
In the automatic driving system,vehicle target detection is a key content and basic task.In order to ensure road safety,it is necessary to accurately detect all targets on the road.In order to solve the problem of low accuracy in vehicle target detection,the article proposes a vehicle target detection algorithm based on improved YOLOv5.The improved YOLOv5 algorithm mainly re-clusters the target borders in the data set through the K-means clustering method on the original basis,and applies the CIoU loss function and DIoU_nms to the YOLOv5 network to improve the target recognition effect.With the improved YOLOv5 algorithm,the target detection mAP reached 85.8%,which is 1.3%higher than the previous YOLOv5 algorithm.
作者
刘超阳
曲金帅
范菁
左金花
唐玉敏
LIU Chao-yang;QU Jin-shuai;FAN Jing;ZUO Jin-hua;TANG Yu-min(University Key Laboratory of Information and Communication on Security Backup and Recovery in Yunnan Province,Yunnan Minzu University,Kunming 650500,China)
出处
《云南民族大学学报(自然科学版)》
CAS
2022年第6期749-754,共6页
Journal of Yunnan Minzu University:Natural Sciences Edition