期刊文献+

一步合成K、Cl共掺富锂锰基正极材料Li_(1.2)Ni_(0.32)Co_(0.04)Mn_(0.44)O_(2)及其性能研究

One-step synthesis of K and Cl co-doped lithium-rich manganese-based anode material Li_(1.2)Ni_(0.32)Co_(0.04)Mn_(0.44)O_(2)and study on its property
下载PDF
导出
摘要 以氢氧化物前驱体Ni_(0.32)Co_(0.04)Mn_(0.44)(OH)_(2)和LiOH·H_(2)O为原料,采用煅烧技术制备了单晶二次球形富锂锰基正极材料Li_(1.2)Ni_(0.32)Co_(0.04)Mn_(0.44)O_(2);以KCl为烧结助剂和掺杂物,制备了不同KCl摩尔分数的富锂锰基正极材料Li_(1.2-x)K_(x)Ni_(0.32)Co_(0.04)Mn_(0.44)O_(2-x)Cl_(x)(x分别为0.01、0.02、0.03、0.04)。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱技术(XPS)、选择区域电子衍射(SEAD)、充放电测试、CV测试和EIS测试对材料结构和电化学性能进行表征,探究了不同氯化钾掺杂量对材料电化学性能的影响。结果表明,熔融的KCl不但促进了一次颗粒之间的分散,而且将钾离子与氯离子同时引入晶格,其中Li_(1.17)K_(0.03)Ni_(0.32)Co_(0.04)Mn_(0.44)O_(1.97)Cl_(0.03)材料的电化学性能较好。适量的KCl掺杂可以提高Li_(1.2)Ni_(0.32)Co_(0.04)Mn_(0.44)O_(2)材料的倍率性能、循环性能等电化学性能。 Li_(1.2)Ni_(0.32)Co_(0.04)Mn_(0.44)O_(2),a single crystal secondary spherical material,is synthesized through calcination technology with Ni_(0.32)Co_(0.04)Mn_(0.44)(OH)_(2)and LiOH·H_(2)O as raw materials.A series of Li-rich Mn-based anode materials Li_(1.2-x)K_(x)Ni_(0.32)Co_(0.04)Mn_(0.44)O_(2-x)Cl_(x)(x=0.01,0.02,0.03,0.04,respectively)are prepared by using potassium chloride as sintering additives and dopant.X-ray diffraction(XRD),scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),selective regional electron diffraction(SEAD),charge and discharge test,CV test and EIS test are employed to characterize the structure and electrochemical properties of the materials.The influences of different doping amount of potassium chloride on the electrochemical properties of the materials are explored.The results show that the molten potassium chloride not only promotes the dispersion between the primary particles,but also leads K+and Cl-simultaneously into the lattice.The electrochemical performance of Li_(1.17)K_(0.03)Ni_(0.32)Co_(0.04)Mn_(0.44)O_(1.97)Cl_(0.03)is better than other prepared materials.The right doping amount of potassium chloride can help Li_(1.2)Ni_(0.32)Co_(0.04)Mn_(0.44)O_(2)material to improve electrochemical performance,such as rate performance and cycling performance.
作者 李冰晶 朱华丽 林锋 陈召勇 LI Bing-jing;ZHU Hua-li;LIN Feng;CHEN Zhao-yong(School of Materials Science and Engineering,Changsha University of Science&Technology,Changsha 410114,China;School of Physics&Electronic Science,Changsha University of Science&Technology,Changsha 410114,China)
出处 《现代化工》 CAS CSCD 北大核心 2023年第1期134-140,共7页 Modern Chemical Industry
基金 国家自然科学基金面上项目(51874048) 湖南省教育厅重点科学研究项目(19A003) 长沙市科技重大专项(kh2003021)。
关键词 锂离子电池 Li_(1.2)Ni_(0.32)Co_(0.04)Mn_(0.44)O_(2) 共掺杂 单晶 二次球 lithium ion battery Li_(1.2)Ni_(0.32)Co_(0.04)Mn_(0.44)O_(2) co-doping single crystal second sphere
  • 相关文献

参考文献2

二级参考文献50

  • 1Arunkumar, T. A., Wu, Y., & Manthiram, A. (2007). Factors influencing the irreversible oxygen loss and reversible capacity in layered Li[Li1/3Mn2/3]Or Li[M]O2 (M=Mn0.5-yNi0.5_yCo2y and N1-yCoy) solid solutions. Chemistry of Materials, 19, 3067 - 3073.
  • 2Cao, H., Zhang, Y., Zhang, J.. & Xia, B.J. (2005). Synthesis and electrochemical characteristics of layered LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries. Solid State Ionics, 176(13/14), 1207-1211.
  • 3Cho, S.-W., Kim, G.-O., & Ryu, K.-S. (2012). Sulfur anion doping and surface modification with LiNiPO4 of a Li[Co0.1 Ni0.15Li0.2Mn0.55]O2 cathode material for Li-ion batteries. Solid State Ionics, 206, 84-90.
  • 4Gao, Y .,Yakovleva, M. V., & Ebner, W. B. (1998). Novel LiNi1-xTix/2Mgx/2O2 compounds as cathode materials for safer lithium-ion batteries. Electrochemical and Solid-State Letters, 1 (3), 117-119.
  • 5He, W., Qian, J., Cao, Y., Ai, X., & Yang, H. (2012). Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13CO0.13]O2 cathode material for Li-ion batteries. RSC Advances, 2(8),3423-3429.
  • 6Ito, A.,Li, D., Sato, Y., Arao, M., Watanabe, M., Hatano, M., et al. (2010). Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17 Li0.2Co0.07 Mn0.56]O2.Journal of Power Sources, 195(2), 567-573.
  • 7Johnson, C. S., Kim, J.-S.. Lefief, C.. Li, N., Vaughey, J. T., & Thackeray, M. M. (2004). The significance of the Li,MnO3 component in 'composite' xLi,Mn03·(1-x)LiMn0.5Ni0.5O2 electrodes. Electrochemistry Communications, 6(10),1085-1091.
  • 8Johnson, C. S., Li, N., Lefief, c, & Thackeray, M. M. (2007). Anomalous capacity and cycling stability ofxLbMnO3·(1 - x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50°C. Electrochemistry Communications, 9(4), 787-795.
  • 9Jouybari, Y. H., & Asgari, S. (2011). Synthesis and electrochemical properties of LiNi0.8Co0.2O2 nanopowders for lithium ion battery applications.Journal of Power Sources, 196(1),337-342.
  • 10Kang, S.-H ., Kempgens, P., Greenbaum, S., Kropf, A. J., Amine, K., & Thackeray, M. M. (2007). Interpreting the structural and electrochemical complexity of 0.5Li2Mn030.5LiM02 electrodes for lithium batteries (M = Mn0.5-xNi0.5-xCo2x, 0≤x≤0. 5).Journal of Materials Chemistry, 17(20),2069-2077.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部