摘要
道路交通标志识别受限于所处复杂的自然场景以及种类繁多等因素,目前少有实时性、准确性、稳定性等各方面均衡的识别系统。利用在工业中应用广泛的YOLO算法对交通标志进行识别,以满足实时性和稳定性;利用大规模的自标数据集对深度网络重新训练,提升其泛化能力,保证识别准确性;将训练完成的深度网络部署在嵌入式设备JetsonTX2上,利用跨平台框架Qt实现交互式界面,使系统具备可应用性。该系统是一个通用平台,可支持不同高精度且高实时的网络模型的替换使用。
Restricted by complex natural scenes and the variety of traffic sign,there are few traffic sign recognition systems that are balanced and practical in terms of real-time,accuracy,adaptability,stability,etc.This paper exploits YOLO algorithm,which is widely used in industry,to recognize traffic signs to satisfy real-time and stability requirements.The deep network is re-trained by using a large-scale self-labeled traffic sign dataset to improve its generalization ability and ensure the recognition accuracy.The trained deep network is deployed on the embedded device Jetson TX2,and the cross-platform framework Qt is used to realize the interactive interface,so that the system is fully applicable.This system is a general-purpose platform that supports the replacement of different high-precision and high-real-time deep network models.
作者
金晓康
吴瑶
施莹娟
沈才有
JIN Xiaokang;WU Yao;SHI Yingjuan;SHEN Caiyou(Jinhua Advanced Research Institute,Jinhua Zhejiang 321013;College of Information Engineering,Jinhua Polytechnic,Jinhua Zhejiang 321013)
出处
《软件》
2023年第1期20-23,共4页
Software
基金
金华市公益性技术应用研究项目(2022-4-060,2022-4-063)
金华市教育科学规划研究课题(JB2022007,JB2023034)
金华高等研究院院设科研项目(GYY202101)资助。
关键词
智能交通系统
交通标志识别
深度网络
大规模数据集
嵌入式
intelligent transportation system
traffic sign recognition
deep network
large-scale data set
embedded