摘要
为解决ORB(oriented FAST and rotated BRIEF)算法提取的特征点分布不均匀且可能重叠的问题,在ORB算法的基础上引入了四叉树结构实现特征点均匀分配,使用KNN算法进行特征点粗略匹配,通过RANSAC算法去除虚假匹配点以获得完整的病虫害图像.实验结果表明,与ORB算法和SIFT相比,新算法匹配精度分别提高了8%以上和3%以上.
In order to solve the problem of uneven distribution of feature points extracted by ORB(oriented FAST and rotated BRIEF)algorithm and possible overlap,a quadtree structure is introduced on the basis of ORB algorithm to achieve uniform distribution of feature points,KNN algorithm is used for rough matching of feature points,and false matching points are removed by RANSAC algorithm to obtain a complete pest and disease images.The experimental results show that this paper improves the matching accuracy by more than 8%and 3%compared with the ORB algorithm and SIFT,respectively.
作者
蔺瑶
曾晏林
贺壹婷
费加杰
黎强
杨毅
LIN Yao;ZENG Yanlin;HE Yiting;FEI Jiajie;LI Qiang;YANG Yi(School of Big Data,Yunnan Agricultural University,Kunming 650201,China)
出处
《云南师范大学学报(自然科学版)》
2023年第1期34-39,共6页
Journal of Yunnan Normal University:Natural Sciences Edition
基金
云南省重大科技专项资助项目(A3032021043002)。
关键词
ORB算法
四叉树
RANSAC算法
无人机
病虫害
ORB algorithm
Quadtree
RANSAC algorithm
Unmanned aerial vehicle(UAV)
Pest and disease