期刊文献+

Hermite梯度重构核近似配点法及其在功能梯度材料板的静力分析中的应用

Hermite Gradient Reproducing Kernel Collocation Method and Its Application in Static Analysis of Functionally Gradient Material Plates
原文传递
导出
摘要 由于直接配点法在求解边值问题时边界上的求解精度较低,论文提出了Hermite梯度重构核近似配点法(HGCM)来改进边界求解精度.重构核近似是无网格法中一种常用的近似函数,但是其在求解高阶导数时格式复杂且非常耗时.HGCM采用梯度重构核近似构建形函数的任意高阶导数,提高了计算效率;通过Hermite配点法构建离散方程,提高了边界求解精度.这种方法在求解对应变系数四阶偏微分方程的功能梯度材料板的静力问题时精度高,计算效率高,并可进一步推广应用于高阶偏微分方程描述的边值问题. Collocation type meshfree methods are one of the typical types of meshfree methods which have easy implementation and high efficiency. However, direct collocation method has low solution accuracy on the boundary when solving boundary value problems. Therefore, this paper proposes a Hermite Gradient Reproducing Kernel Collocation Method(HGCM) to improve the boundary solution accuracy. Hermite collocation method can improve the accuracy of the solutions by introducing more degrees of freedom on the boundaries. Reproducing kernel approximation is a commonly used approximation function in meshfree methods, but calculation of the high gradients is complex and time-consuming. HGCM adopts the gradient reproducing kernel(GRK) functions to create any high-order derivatives of the approximation function. High order derivations of RK function require high order differentiation of moment matrix inversion while GRK only needs the high order differentiation of basis functions. Utilizing GRK can remarkably decrease the complexity and computation costs, which is much easier and more efficient to calculate the gradients of the shape function. This improves the computational efficiency. Functionally graded materials(FGMs) are a type of advanced composite materials whose material properties areof continuous distribution. FGMs can achieve maximum benefits from the design of material composition based on their inhomogeneity. Different from the governing equations of constant coefficients for other homogeneous materials, the governing equations for FGMs are of variable coefficients partial differential equations(PDEs). It’s hard to use the conventional finite element method(FEM) based on low order shape functions to solve such variable coefficients PDEs. By employing high order shape functions, HGCM has high accuracy and high computational efficiency in solving the static problems of functionally graded material plates which is governed by a fourth-order partial differential equation of variant coefficients. Numerical examples demonstrate the good performance of the proposed method. This method can be further applied to boundary value problems described by high-order partial differential equations.
作者 王莉华 廖樟增 刘义嘉 杨帆 Lihua Wang;Zhangzeng Liao;Yijia Liu;Fan Yang(School of Aerospace Engineering and Applied Mechanics,Tongji University,Shanghai,200092)
出处 《固体力学学报》 CAS CSCD 北大核心 2022年第6期692-702,共11页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金项目(11972261) 上海市科技重大专项(2021SHZDZX0100) 中央高校基本科研业务费专项资助。
关键词 梯度重构核近似 Hermite配点法 变系数四阶偏微分方程 功能梯度材料板 静力分析 gradient reproducing kernel Hermite collocation fourth-order partial differential equations of variable coefficients functionally graded material plate static analysis
  • 相关文献

参考文献5

二级参考文献49

  • 1CHENG Yumin1 & LI Jiuhong2 1. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China,2. Department of Building Engineering, Xi’an University of Technology, Xi’an 710048, China.A complex variable meshless method for fracture problems[J].Science China(Physics,Mechanics & Astronomy),2006,49(1):46-59. 被引量:16
  • 2程玉民,彭妙娟,李九红.复变量移动最小二乘法及其应用[J].力学学报,2005,37(6):719-723. 被引量:41
  • 3王寿梅,刘智勇.剪切锁闭的本质及解除方法[J].航空学报,1989,10(1). 被引量:3
  • 4杨杰.单向变刚度板结构分析的伽辽金线法[J].武汉化工学院学报,1996,18(1):57-60. 被引量:4
  • 5Li S, Liu W K, Meshfree particle methods and their applications[J]. Applied Mechanics Reviews, 2002,55:1- 34.
  • 6Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods [J]. International Journal for Numerical Methods in Engineering, 1994, 37: 229-256.
  • 7Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods [J]. International Journal for Numerical Methods in Fluids, 1995, 20: 1081-1106.
  • 8Beissel S, Belytschko T. Nodal integration of the element-free Galerkin method[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 49- 74.
  • 9Chen J S, Wu C T, Yoon S, You Y. A stabilized conforming nodal integration for Galerkin meshfree methods [ J ]. International Journal for Numerical Methods in Engineering, 2001, 50:435- 466.
  • 10Wang D, Chen J S. Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 1065-1083.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部