期刊文献+

精准思维下网络思想政治教育的概念模型及实践探索 被引量:1

Micro-area Network Ideological and Political Education: Conception, Model and Application
下载PDF
导出
摘要 微域网络思想政治教育是在精准思维下诞生的概念,是面向特定范围内学生群体或个体的一种网络思政形态,具有小范围和高精准的特点。本文以精准思政为逻辑起点、新媒体为工具平台、大数据为方法手段,搭建起包含任务层、资源层和诊断层的三层多维的微域网络思政精准体系模型。在此基础上,对微域网络思政进行实践探索,通过画像分析、指数分析、预警分析,针对特定个体、特定特征、特定事项挖掘精准问题;通过在共性教育上精准供给教学资源、个体辅导中精准定制帮扶措施,聚焦精准目标,实现“点析”、“点拨”、“点化”,不断增强思想政治教育工作的即时性、前瞻性、有效性。 “Micro-area network ideological and political education” is a concept based on the notion of precision. It is a kind of network ideological and political education for a specific range of student groups or individuals, featuring small range and high precision. To be precise in ideological and political work, a multi-dimensional model, which includes layers of task, resource and judgement, is established, using new media and big data. Based on the model, micro-area network ideological and political education can be implemented. In the process, by drawing data portrait of individuals, analyzing index of specific states and carrying out early warning for critical items, problems are identified precisely;through precise supply of teaching resources in general education and precise assistance measures in individual counseling, aims are achieved precisely. By these methods, ideological and political work becomes more efficient, more effective and more predictive.
作者 杨东杰 胡锐 YANG Dong-jie;HU Rui(College of Science,China University of Petroleum,Beijing 102249,China)
出处 《华北电力大学学报(社会科学版)》 2023年第1期117-124,共8页 Journal of North China Electric Power University(Social Sciences)
基金 2017年度教育部人文社会科学研究专项任务(中国特色社会主义理论体系研究)项目“微域网络思政教育探索与实践”(17JD710097) 北京市社会科学基金项目暨2018年度首都大学生思想政治教育重点课题“辅导员全程全方位育人平台建设及实效性研究——基于移动学习分析技术视角”(17KDB034:BJSZ2018ZD07)。
关键词 微域网络思政 网络思想政治教育 精准思维 精准思政 micro-area network ideological and political education network ideological and political education precise thinking precise ideological and political work
  • 相关文献

参考文献8

二级参考文献79

  • 1胡范铸.从“修辞技巧”到“言语行为”——试论中国修辞学研究的语用学转向[J].修辞学习,2003(1):2-5. 被引量:84
  • 2Ali, L., Asadi, M., Ga~evic,D, & Hatala,M. (2013) Fac- tors influencing beliefs for adoption of a learning analytics tool : An empir- ical study[J]. Computers & Education, 62: 130-148.
  • 3Baker, R. S. J. D. (2011). Data mining for education[A]. B. McGaw, P. Peterson, & E. Baker. International Encyclopedia of Ed-ucation[C]. Oxford, UK: Elsevier.
  • 4Bakharia, A. ,& Dawson, S. (2011). SNAPP: A bird's-eye view of temporal participant interaction[A] Proceedings of the 1st inter- national conference on learning analytics and knowledge. ACM[C]. 168- 173.
  • 5Bienkowski, M. , Feng, M. , & Means, B. (2012). Enhan- cing teaching and learning through educational data mining and learning analytics[DB/OL]. Washington, DC: U.S. Department of Education. Retrieved from http://www, ed. gov/edblogs/technology/files/2012/03/ edm-labrief, pdf.
  • 6Bower, M. , & Hedberg, J G. (2010). A quantitative multimo- dal discourse analysis of teaching and learning in a web-eonferencing en- vironment - The efficacy of student-centred learning designs [ J ]. Com- puters & Education,54 (2) :462-478.
  • 7Smith,V.C.,Lange.A.,&Huston,D.R.(2012)Predic.tivemodelingtoforecaststudentoutcomesanddriveeffectiveinterventionsinonlinecommunitycollegecourses[J].JournalofAsynchronousLearn.ingNetworks,16(3):51—61.
  • 8Brown, M. ( 2012 ) Learning analyties: Moving from concept to practice [ DB/OL ]. http ://www. educause, edu/library/resourees/learn- ing-analytics-moving-coneept -practice..
  • 9Chatti, M. A. , Dyckhoff, A. L. , Schroeder, U. , & Thus, H. (2012). A reference model for learning analytics[ J]. International Jour- nal of Technology Enhanced Learning, 4(5) : 318-331.
  • 10Crow, M. M. (2012). No more excuses[ DB/OL]. http:// www. educause, edu/ero/article/no - more - excuses - michael - m - crow - analytics.

共引文献200

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部